INSTALLATION INSTRUCTIONS AIR HANDLERS

FEATURING R-22 REFRIGERANT:

(-)HLA High Efficiency (-)HSA Standard Efficiency

FEATURING EARTH-FRIENDLY R-410A REFRIGERANT: Ref 200

(-)HLL High Efficiency (-)HSL Standard Efficiency

RECOGNIZE THIS SYMBOL AS AN INDICATION OF IMPORTANT SAFETY INFORMATION!

These instructions are intended as an aid to qualified licensed service personnel for proper installation, adjustment and operation of this unit. Read these instructions thoroughly before attempting installation or operation. Failure to follow these instructions may result in improper installation, adjustment, service or maintenance possibly resulting in fire, electrical shock, property damage, personal injury or death.

DO NOT DESTROY THIS MANUAL PLEASE READ CAREFULLY AND KEEP IN A SAFE PLACE FOR FUTURE REFERENCE BY A SERVICEMAN

TABLE OF CONTENTS

1.0		ETY INFORMATION	
2.0	GEN	ERAL INFORMATION	5
	2.1	Important Information About Efficiency and Indoor Air Quality	5
	2.2	Receiving	
	2.3	Clearances	
	2.4	Model Number Explanation	
	2.7	2.4A Available Models	
	2.5	Dimensions and Weights	
~ ~	-		
3.0		LICATIONS	
	3.1	Vertical Upflow	
	3.2	Vertical Downflow	
	3.3	Horizontal1	
	3.4	Installation in an Unconditioned Space 1	
4.0	ELE	CTRICAL WIRING	3
	4.1	Power Wiring	13
	4.2	Control Wiring	14
	4.3	Grounding	
	4.4	Copper Wire Size	
	4.5	Blower Motor Electrical Data	
	т.5	4.5A Blower Motor Electrical Data: (-)HSA/(-)HSL	
	4.0	4.5B Blower Motor Electrical Data: (-)HLA/(-)HLL	
	4.6	Electric Heat Electrical Data	
		4.6A Electric Heat Electrical Data: (-)HSA/(-)HSL 1	
		4.6B Electric Heat Electrical Data: (-)HLA/(-)HLL 1	
		4.6C Heater Kit Supplemental Information	
5.0	AIRF	LOW PERFORMANCE 2	21
	5.1	Airflow Operatng Limits (-)HSA/(-)HSL 2	21
	5.2	240V Airflow Performance Data (-)HSA/(-)HSL	22
	5.3	115/208/480V Airflow Performance Data (-)HSA/(-)HSL	24
	5.4	115/208/240V Airflow Performance Data (-)HLA/(-)HLL	
6.0	DUC		
6.0 7 0		TWORK	28
6.0 7.0	REF	TWORK. 2 RIGERANT CONNECTIONS 2	28 28
	REF 7.1	TWORK. 2 RIGERANT CONNECTIONS 2 TEV Sensing Bulb 2	28 28 28
	REF 7.1 7.2	TWORK. 2 RIGERANT CONNECTIONS 2 TEV Sensing Bulb 2 Condensate Drain Tubing 2	28 28 28 28
7.0	REF 7.1 7.2 7.3	TWORK. 2 RIGERANT CONNECTIONS 2 TEV Sensing Bulb 2 Condensate Drain Tubing 2 Duct Flanges 2	28 28 28 28 28 29
7.0 8.0	REF 7.1 7.2 7.3 AIR	TWORK. 2 RIGERANT CONNECTIONS 2 TEV Sensing Bulb 2 Condensate Drain Tubing 2 Duct Flanges 2 FILTER 2	28 28 28 28 28 29 29 29 29
7.0	REF 7.1 7.2 7.3 AIR SEQ	TWORK. 2 RIGERANT CONNECTIONS 2 TEV Sensing Bulb 2 Condensate Drain Tubing 2 Duct Flanges 2 FILTER 2 UENCE OF OPERATION 3	28 28 28 28 29 29 29 29 29 29 29 30
7.0 8.0	REF 7.1 7.2 7.3 AIR SEQ 9.1	TWORK. 2 RIGERANT CONNECTIONS 2 TEV Sensing Bulb 2 Condensate Drain Tubing 2 Duct Flanges 2 FILTER 2 UENCE OF OPERATION 3 Cooling. 3	28 28 28 29 29 29 29 30 30
7.0 8.0	REF 7.1 7.2 7.3 AIR SEQ 9.1 9.2	TWORK. 2 RIGERANT CONNECTIONS 2 TEV Sensing Bulb 2 Condensate Drain Tubing 2 Duct Flanges 2 FILTER 2 UENCE OF OPERATION 3 Cooling. 3 Heating (electric heat only) 3	28 28 28 29 29 29 30 30 30
7.0 8.0	REF 7.1 7.2 7.3 AIR SEQ 9.1	TWORK. 2 RIGERANT CONNECTIONS 2 TEV Sensing Bulb 2 Condensate Drain Tubing 2 Duct Flanges 2 FILTER 2 UENCE OF OPERATION 3 Cooling. 3	28 28 28 29 29 29 30 30 30
7.0 8.0	REF 7.1 7.2 7.3 AIR SEQ 9.1 9.2	TWORK.2RIGERANT CONNECTIONS2TEV Sensing Bulb2Condensate Drain Tubing2Duct Flanges2FILTER2UENCE OF OPERATION3Cooling.3Heating (electric heat only)3Heating (heat pump)3Blower Time Delay.3	28 28 28 29 29 30 30 30 30 30 30
7.0 8.0	REF 7.1 7.2 7.3 AIR SEQ 9.1 9.2 9.3	TWORK.2RIGERANT CONNECTIONS2TEV Sensing Bulb2Condensate Drain Tubing2Duct Flanges2FILTER2UENCE OF OPERATION3Cooling.3Heating (electric heat only)3Heating (heat pump)3	28 28 28 29 29 30 30 30 30 30 30
7.0 8.0	REF 7.1 7.2 7.3 AIR SEQ 9.1 9.2 9.3 9.4	TWORK.2RIGERANT CONNECTIONS2TEV Sensing Bulb2Condensate Drain Tubing2Duct Flanges2FILTER2UENCE OF OPERATION3Cooling.3Heating (electric heat only)3Heating (heat pump)3Blower Time Delay.3	28 28 29 29 30 30 30 30 30 30 30 30
7.0 8.0	REF 7.1 7.2 7.3 AIR SEQ 9.1 9.2 9.3 9.4 9.5	TWORK.2RIGERANT CONNECTIONS2TEV Sensing Bulb2Condensate Drain Tubing2Duct Flanges2FILTER2UENCE OF OPERATION3Cooling.3Heating (electric heat only)3Heating (heat pump)3Blower Time Delay.3Defrost Sequence3	28 28 28 29 29 30 30
7.0 8.0 9.0	REF 7.1 7.2 7.3 AIR SEQ 9.1 9.2 9.3 9.4 9.5 9.6 9.7	TWORK.2RIGERANT CONNECTIONS2TEV Sensing Bulb2Condensate Drain Tubing2Duct Flanges2FILTER2UENCE OF OPERATION3Cooling.3Heating (electric heat only)3Heating (heat pump)3Blower Time Delay.3Defrost Sequence3Emergency Heat3	28 28 29 29 30 30 30 30 30 30 31 31
7.0 8.0 9.0	REF 7.1 7.2 7.3 AIR 9.1 9.1 9.2 9.3 9.4 9.5 9.6 9.7 CAL	TWORK.2RIGERANT CONNECTIONS2TEV Sensing Bulb2Condensate Drain Tubing2Duct Flanges2FILTER2UENCE OF OPERATION3Cooling.3Heating (electric heat only)3Heating (heat pump)3Blower Time Delay.3Defrost Sequence3Emergency Heat3Room Thermostat3CULATIONS3	28 28 29 29 30 30 30 30 30 30 30 31 31 31
7.0 8.0 9.0	REF 7.1 7.2 7.3 AIR SEQ 9.1 9.2 9.3 9.4 9.5 9.6 9.7 0 CAL 10.1	TWORK.2RIGERANT CONNECTIONS2TEV Sensing Bulb2Condensate Drain Tubing2Duct Flanges2FILTER2UENCE OF OPERATION3Cooling3Heating (electric heat only)3Heating (heat pump)3Blower Time Delay3Defrost Sequence3Emergency Heat3Room Thermostat3CulLATIONS3Calculating Temperature Rise3	28 28 29 29 30 30 30 30 30 30 30 31 31 31 31
7.0 8.0 9.0	REF 7.1 7.2 7.3 AIR SEQ 9.1 9.2 9.3 9.4 9.5 9.6 9.7 CAL 10.1 10.2	TWORK.2RIGERANT CONNECTIONS2TEV Sensing Bulb2Condensate Drain Tubing2Duct Flanges2FILTER2UENCE OF OPERATION3Cooling3Heating (electric heat only)3Heating (heat pump)3Blower Time Delay3Defrost Sequence3Emergency Heat3Room Thermostat3Calculating Temperature Rise3Calculating BTUH Heating Capacity3	28 28 29 29 30 30 30 30 30 31 31 31 31 31
7.0 8.0 9.0	REF 7.1 7.2 7.3 AIR SEQ 9.1 9.2 9.3 9.4 9.5 9.6 9.7 CAL 10.1 10.2 10.3	TWORK.2RIGERANT CONNECTIONS2TEV Sensing Bulb2Condensate Drain Tubing2Duct Flanges2FILTER2UENCE OF OPERATION3Cooling3Heating (electric heat only)3Heating (heat pump)3Blower Time Delay3Defrost Sequence3Emergency Heat3Room Thermostat3Calculating Temperature Rise3Calculating BTUH Heating Capacity3Calculating Airflow CFM3	28 28 29 29 30 30 30 30 30 30 31 31 31 31 31 31
7.0 8.0 9.0	REF 7.1 7.2 7.3 AIR SEQ 9.1 9.2 9.3 9.4 9.5 9.6 9.7 CAL 10.1 10.2 10.3 10.4	TWORK.2RIGERANT CONNECTIONS2TEV Sensing Bulb2Condensate Drain Tubing2Duct Flanges2FILTER2UENCE OF OPERATION3Cooling.3Heating (electric heat only)3Heating (heat pump)3Blower Time Delay.3Defrost Sequence3Emergency Heat3Colulating Temperature Rise3Calculating BTUH Heating Capacity3Calculating Airflow CFM.3Calculating Correction Factor3	28 28 29 30 30 30 30 30 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31
7.0 8.0 9.0 10.0	REF 7.1 7.2 7.3 AIR SEQ 9.1 9.2 9.3 9.4 9.5 9.6 9.7 CAL 10.1 10.2 10.3 10.4 PRE	TWORK.2RIGERANT CONNECTIONS2TEV Sensing Bulb2Condensate Drain Tubing2Duct Flanges2FILTER2UENCE OF OPERATION3Cooling.3Heating (electric heat only)3Heating (heat pump)3Blower Time Delay.3Defrost Sequence3Emergency Heat3Colulating Temperature Rise3Calculating BTUH Heating Capacity3Calculating Airflow CFM.3Calculating Correction Factor3START CHECKLIST3	28 28 29 <td< th=""></td<>
7.0 8.0 9.0 10.0	REF 7.1 7.2 7.3 AIR SEQ 9.1 9.2 9.3 9.4 9.5 9.6 9.7 CAL 10.1 10.2 10.3 10.4 PRE MAII	TWORK.2RIGERANT CONNECTIONS2TEV Sensing Bulb2Condensate Drain Tubing2Duct Flanges2FILTER2UENCE OF OPERATION3Cooling.3Heating (electric heat only)3Heating (heat pump)3Blower Time Delay.3Defrost Sequence3Emergency Heat3Calculating Temperature Rise3Calculating BTUH Heating Capacity3Calculating Correction Factor3START CHECKLIST3NTENANCE3	28 28 29 <td< th=""></td<>
7.0 8.0 9.0 10.0	REF 7.1 7.2 7.3 AIR SEQ 9.1 9.2 9.3 9.4 9.5 9.6 9.7 CAL 10.1 10.2 10.3 10.4 PRE MAII 12.1	TWORK.2RIGERANT CONNECTIONS2TEV Sensing Bulb2Condensate Drain Tubing2Duct Flanges2FILTER2UENCE OF OPERATION3Cooling.3Heating (electric heat only)3Heating (heat pump)3Blower Time Delay.3Defrost Sequence3Emergency Heat3Colulating Temperature Rise3Calculating BTUH Heating Capacity3Calculating Correction Factor3START CHECKLIST3Air Filter3	28 28 29 29 30 30 30 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31
7.0 8.0 9.0 10.0	REF 7.1 7.2 7.3 AIR SEQ 9.1 9.2 9.3 9.4 9.5 9.6 9.7 CAL 10.1 10.2 10.3 10.4 PRE MAII 12.1 12.2	TWORK.2RIGERANT CONNECTIONS2TEV Sensing Bulb2Condensate Drain Tubing2Duct Flanges2FILTER2UENCE OF OPERATION3Cooling3Heating (electric heat only)3Heating (heat pump)3Blower Time Delay3Defrost Sequence3Emergency Heat3Calculating Temperature Rise3Calculating BTUH Heating Capacity3Calculating Correction Factor3START CHECKLIST3NTENANCE3Air Filter3Indoor Coil/Drain Pan/Drain Line3	28 28 29 29 30 30 30 30 30 31 31 31 31 31 31 31 31
7.0 8.0 9.0 10.0	REF 7.1 7.2 7.3 AIR SEQ 9.1 9.2 9.3 9.4 9.5 9.6 9.7 CAL 10.1 10.2 10.3 10.4 PRE MAII 12.1 12.2 12.3	TWORK.2RIGERANT CONNECTIONS2TEV Sensing Bulb2Condensate Drain Tubing2Duct Flanges2FILTER2UENCE OF OPERATION3Cooling.3Heating (electric heat only)3Heating (heat pump)3Blower Time Delay.3Defrost Sequence3Emergency Heat3Colulating Temperature Rise3Calculating BTUH Heating Capacity3Calculating Orrection Factor3START CHECKLIST3NTENANCE3Air Filter3Indoor Coil/Drain Pan/Drain Line3Blower Motor & Wheel3	28 28 29 29 30 30 30 30 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31
7.0 8.0 9.0 10.0	REF 7.1 7.2 7.3 AIR SEQ 9.1 9.2 9.3 9.4 9.5 9.6 9.7 CAL 10.2 10.3 10.4 PRE 0 MAII 12.1 12.2 12.3 12.4	TWORK.2RIGERANT CONNECTIONS2TEV Sensing Bulb2Condensate Drain Tubing2Duct Flanges2FILTER2UENCE OF OPERATION3Cooling.3Heating (electric heat only)3Heating (heat pump)3Blower Time Delay.3Defrost Sequence3Emergency Heat3Calculating Temperature Rise3Calculating BTUH Heating Capacity3Calculating Correction Factor3START CHECKLIST3NTENANCE3Air Filter3Indoor Coil/Drain Pan/Drain Line3Lubrication3Lubrication3	28 28 29 29 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
7.0 8.0 9.0 10.0	REF 7.1 7.2 7.3 AIR SEQ 9.1 9.2 9.3 9.4 9.5 9.6 9.7 CAL 10.1 10.2 10.3 10.4 PRE 0.4 12.1 12.2 12.3 12.4 12.5	TWORK.2RIGERANT CONNECTIONS2TEV Sensing Bulb2Condensate Drain Tubing2Duct Flanges2FILTER2UENCE OF OPERATION3Cooling.3Heating (electric heat only)3Heating (heat pump)3Blower Time Delay.3Defrost Sequence3Emergency Heat3Room Thermostat3Calculating Temperature Rise3Calculating BTUH Heating Capacity3Calculating Correction Factor3START CHECKLIST3NTENANCE3Air Filter3Indoor Coil/Drain Pan/Drain Line3Blower Assembly Removal & Replacement3	28 28 29 29 29 30 30 30 31 31 31 31 31 31 31 31
7.0 8.0 9.0 10.0	REF 7.1 7.2 7.3 AIR SEQ 9.1 9.2 9.3 9.4 9.5 9.6 9.7 CAL 10.1 10.2 10.3 10.4 PRE 0.4 12.1 12.2 12.3 12.4 12.5	TWORK.2RIGERANT CONNECTIONS2TEV Sensing Bulb2Condensate Drain Tubing2Duct Flanges2FILTER2UENCE OF OPERATION3Cooling.3Heating (electric heat only)3Heating (heat pump)3Blower Time Delay.3Defrost Sequence3Emergency Heat3Calculating Temperature Rise3Calculating BTUH Heating Capacity3Calculating Correction Factor3START CHECKLIST3NTENANCE3Air Filter3Indoor Coil/Drain Pan/Drain Line3Lubrication3Lubrication3	28 28 29 29 29 30 30 30 31 31 31 31 31 31 31 31
7.0 8.0 9.0 10.0	REF 7.1 7.2 7.3 AIR SEQ 9.1 9.2 9.3 9.4 9.5 9.6 9.7 CAL 10.1 10.2 10.3 10.4 PRE 12.1 12.2 12.3 12.4 12.5 12.6	TWORK.2RIGERANT CONNECTIONS2TEV Sensing Bulb2Condensate Drain Tubing2Duct Flanges2FILTER2UENCE OF OPERATION3Cooling.3Heating (electric heat only)3Heating (heat pump)3Blower Time Delay.3Defrost Sequence3Emergency Heat3Room Thermostat3Calculating Temperature Rise3Calculating BTUH Heating Capacity3Calculating Correction Factor3START CHECKLIST3NTENANCE3Air Filter3Indoor Coil/Drain Pan/Drain Line3Blower Assembly Removal & Replacement3	28 28 28 29 30 30 30 30 30 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31
7.0 8.0 9.0 10.0 11.0 12.0	REF 7.1 7.2 7.3 AIR SEQ 9.1 9.2 9.3 9.4 9.5 9.6 9.7 CAL 10.1 10.2 10.3 10.4 PRE 12.1 12.2 12.3 12.4 12.5 12.6 12.7 REP	TWORK.2RIGERANT CONNECTIONS2TEV Sensing Bulb2Condensate Drain Tubing2Duct Flanges2FILTER2UENCE OF OPERATION3Cooling.3Heating (electric heat only)3Heating (heat pump)3Blower Time Delay.3Defrost Sequence3Emergency Heat3Calculating Temperature Rise3Calculating BTUH Heating Capacity3Calculating Correction Factor3START CHECKLIST3Indoor Coil/Drain Pan/Drain Line3Blower Motor & Wheel3Lubrication3Blower Assembly Removal & Replacement3Motor Replacement3	28 28 29 30 30 30 31 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11

WARNING (SEE SECTION 4.0: ELECTRICAL WIRING)

Disconnect all power to unit before installing or servicing. More than one disconnect switch may be required to de-energize the equipment. Hazardous voltage can cause severe personal injury or death.

WARNING (SEE SECTION 12.5: BLOWER ASSEMBLY REMOVAL & REPLACEMENT)

If removal of the blower assembly is required, all disconnect switches supplying power to the equipment must be de-energized and locked (if not in sight of unit) so the field power wires can be safely removed from the blower assembly. Failure to do so can cause electrical shock resulting in personal injury or death.

WARNING

Because of possible damage to equipment or personal injury, installation, service, and maintenance should be performed by a trained, qualified service personnel. Consumer service is recommended only for filter cleaning/ replacement. Never operate the unit with the access panels removed.

1.0 SAFETY INFORMATION

A WARNING

Duct leaks can create an unbalanced system and draw pollutants such as dirt, dust, fumes and odors into the home causing property damage. Fumes and odors from toxic, volatile or flammable chemicals, as well as automobile exhaust and carbon monoxide (CO), can be drawn into the living space through leaking ducts and unbalanced duct systems causing personal injury or death (see Figure 1).

- If air-moving equipment or ductwork is located in garages or off-garage storage areas all joints, seams, and openings in the equipment and duct must be sealed to limit the migration of toxic fumes and odors including carbon monoxide from migrating into the living space.
- If air-moving equipment or ductwork is located in spaces containing fuel burning appliances such as water heaters or boilers - all joints, seams, and openings in the equipment and duct must also be sealed to prevent depressurization of the space and possible migration of combustion byproducts including carbon monoxide into the living space.

A WARNING

These instructions are intended as an aid to qualified, licensed service personnel for proper installation, adjustment and operation of this unit. Read these instructions thoroughly before attempting installation or operation. Failure to follow these instructions may result in improper installation, adjustment, service or maintenance possibly resulting in fire, electrical shock, property damage, personal injury or death.

A WARNING (SEE WARNINGS IN REGARD TO DUCTWORK)

Do not install this unit in manufactured (mobile) homes. Improper installation is more likely in manufactured housing due to ductwork material, size, location, and arrangement. Installations in manufactured housing can cause a fire resulting in property damage, personal injury or death.

EXCEPTION: Manufactured housing installations are approved only with documentation by a recognized inspection authority that the installation has been made in compliance with the instructions and all warnings have been observed.

WARNING (SEE SECTION 3.2: VERTICAL DOWNFLOW)

The RXHB-17, RXHB-21 or RXHB-24 combustible floor base is required when some units with electric heat are applied downflow on combustible flooring. Failure to use the base can cause a fire resulting in property damage, personal injury or death. See <u>CLEARANCES</u> for units requiring a combustible floor base. See the accessory section in this manual for combustible floor base RXHB.

WARNING (SEE SECTION 4.3: GROUNDING)

The unit must be permanently grounded. Failure to do so can result in electrical shock causing personal injury or death.

WARNING (see section 12.0: maintenance)

Units with circuit breaker(s) meet requirements as a service disconnect switch, however, if access is required to the line side (covered) of the circuit breaker, this side of the breaker(s) will be energized with the breaker(s) de-energized. Contact with the line side can cause electrical shock resulting in personal injury or death.

WARNING (SEE SECTION 5.0: DUCTWORK)

Do not, under any circumstances, connect return ductwork to any other heat producing device such as fireplace insert, stove, etc. Unauthorized use of such devices may result in fire, carbon monoxide poisoning, explosion, personal injury or property damage.

WARNING

PROPOSITION 65: This appliance contains fiberglass insulation. Respirable particles of fiberglass are known to the State of California to cause cancer.

All manufacturer products meet current Federal OSHA Guidelines for safety. California Proposition 65 warnings are required for certain products, which are not covered by the OSHA standards.

California's Proposition 65 requires warnings for products sold in California that contain or produce any of over 600 listed chemicals known to the State of California to cause cancer or birth defects such as fiberglass insulation, lead in brass, and combustion products from natural gas.

All "new equipment" shipped for sale in California will have labels stating that the product contains and/or produces Proposition 65 chemicals. Although we have not changed our processes, having the same label on all our products facilitates manufacturing and shipping. We cannot always know "when, or if" products will be sold in the California market.

You may receive inquiries from customers about chemicals found in, or produced by, some of our heating and air-conditioning equipment, or found in natural gas used with some of our products. Listed below are those chemicals and substances commonly associated with similar equipment in our industry and other manufacturers.

- Glass Wool (Fiberglass) Insulation
- Carbon Monoxide (CO).
- Formaldehyde
- Benzene

More details are available at the websites for OSHA (Occupational Safety and Health Administration), at <u>www.osha.gov</u> and the State of California's OEHHA (Office of Environmental Health Hazard Assessment), at <u>www.oehha.org</u>. Consumer education is important since the chemicals and substances on the list are found in our daily lives. Most consumers are aware that products present safety and health risks, when improperly used, handled and maintained.

WARNING (see section 12.6: motor replacement)

To avoid electrical shock which can result in personal injury or death, use only the screws furnished in the motor shell mounting holds. Screws are #8-18 x .25 in. long blunt nose thread forming. Screws longer than 1/4 in. may contact the motor winding.

WARNING (SEE SECTION 7.0: AIR FILTER)

Do not operate the system without filters. A portion of the dust entrained in the air may temporarily lodge in the duct runs and at the supply registers. Any circulated dust particles could be heated and charred by contact with the air handler elements. This residue could soil ceilings, walls, drapes, carpets and other articles in the house.

Soot damage may occur with filters in place, when certain types of candles, oil lamps or standing pilots are burned.

WARNING

The first 36 inches of supply air plenum and ductwork must be constructed of sheet metal as required by NFPA 90B. The supply air plenum or duct must have a solid sheet metal bottom directly under the unit with no openings, registers or flexible air ducts located in it. If flexible supply air ducts are used they may be located only in the vertical walls of a rectangular plenum, a minimum of 6 inches from the solid bottom. Metal plenum or duct may be connected to the combustible floor base, if not, it must be connected to the unit supply duct flanges such that combustible floor or other combustible material is not exposed to the supply air opening from the downflow unit. Exposing combustible (non-metal) material to the supply opening of a downflow unit can cause a fire resulting in property damage, personal injury or death.

Exceptions to downflow warnings:

• Installations on concrete floor slab with supply air plenum and ductwork completely encased in not less than 2 inches of concrete (See NFPA 90B).

A CAUTION (SEE SECTION 3.3: HORIZONTAL)

Horizontal units must be configured for right hand air supply or left hand air supply. Horizontal drain pan must be located under indoor coil. Failure to use the drain pan can result in property damage.

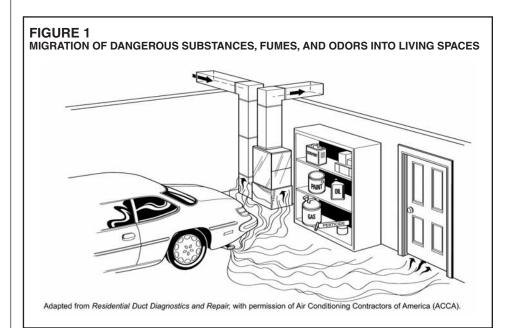
CAUTION (SEE SECTION 2.1: RECEIVING)

In compliance with recognized codes, it is recommended that an auxiliary drain pan be installed under all evaporator coils or units containing evaporator coils that are located in any area of a structure where damage to the building or building contents may occur as a result of an overflow of the coil drain pan or a stoppage in the primary condensate drain piping. See accessories for auxiliary horizontal overflow pan RXBM.

A CAUTION

When used in cooling applications, excessive sweating may occur when unit is installed in an unconditioned space. This can result in property damage.

Improper installation, or installation not made in accordance with the Underwriters Laboratory (UL) certification or these instructions, can result in unsatisfactory operation and/or dangerous conditions and are not covered by the unit warranty.


In compliance with recognized codes, it is recommended that an auxiliary drain pan be installed under all evaporator coils or units containing evaporator coils that are located in any area of a structure where damage to the building or building contents may occur as a result of an overflow of the coil drain pan or a stoppage in the primary condensate drain piping. See accessories section of these instructions for auxiliary horizontal overflow pan information (model RXBM).

2.0 GENERAL INFORMATION

2.1 IMPORTANT INFORMATION ABOUT EFFICIENCY AND INDOOR AIR QUALITY

Central cooling and heating equipment is only as efficient as the duct system that carries the cooled or heated air. To maintain efficiency, comfort and good indoor air quality, it is important to have the proper balance between the air being supplied to each room and the air returning to the cooling and heating equipment.

Proper balance and sealing of the duct system improves the efficiency of the heating and air conditioning system and improves the indoor air quality of the home by reducing the amount of airborne pollutants that enter homes from spaces where the ductwork and / or equipment is located. The manufacturer and the U.S. Environmental Protection Agency's Energy Star Program recommend that central duct systems be checked by a qualified contractor for proper balance and sealing.

A WARNING

Duct leaks can create an unbalanced system and draw pollutants such as dirt, dust, fumes and odors into the home causing property damage. Fumes and odors from toxic, volatile or flammable chemicals, as well as automobile exhaust and carbon monoxide (CO), can be drawn into the living space through leaking ducts and unbalanced duct systems causing personal injury or death (see Figure 1).

- If air-moving equipment or ductwork is located in garages or off-garage storage areas all joints, seams, and openings in the equipment and duct must be sealed to limit the migration of toxic fumes and odors including carbon monoxide from migrating into the living space.
- If air-moving equipment or ductwork is located in spaces containing fuel burning appliances such as water heaters or boilers - all joints, seams, and openings in the equipment and duct must also be sealed to prevent depressurization of the space and possible migration of combustion byproducts including carbon monoxide into the living space.

Improper installation, or installa-tion not made in accordance with the Underwriters Laboratory (UL) certification or these instructions, can result in unsatisfactory operation and/or dangerous condi-tions and are not covered by the unit warranty.

In compliance with recognized codes, it is recommended that an auxiliary drain pan be installed under all evaporator coils or units containing evaporator coils that are located in any area of a structure where damage to the building or building contents may occur as a result of an overflow of the coil drain pan or a stoppage in the primary condensate drain piping. See accessories section of these instructions for auxiliary horizontal overflow pan information (model RXBM).

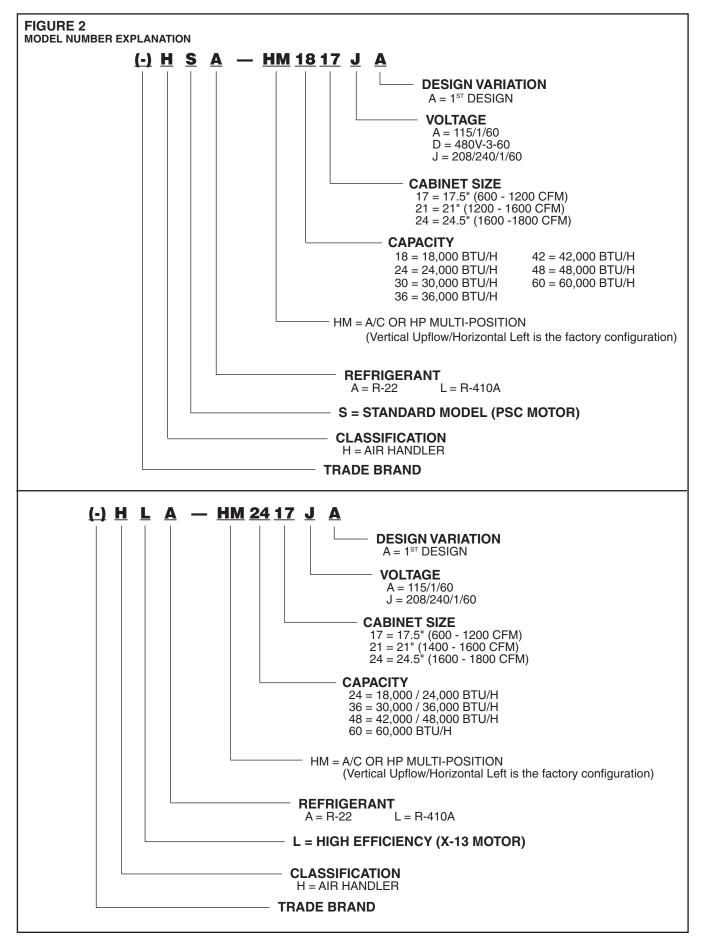
2.2 RECEIVING

Immediately upon receipt, all cartons and contents should be inspected for transit damage. Units with damaged cartons should be opened immediately. If damage is found, it should be noted on the delivery papers, and a damage claim filed with the last carrier.

- After unit has been delivered to job site, remove carton taking care not to damage unit.
- Check the unit rating plate for unit size, electric heat, coil, voltage, phase, etc. to be sure equipment matches what is required for the job specification.
- Read the entire instructions before starting the installation.
- Some building codes require extra cabinet insulation and gasketing when unit is installed in attic applications.
- If installed in an unconditioned space, apply caulking around the power wires, control wires, refrigerant tubing and condensate line where they enter the cabinet. Seal the power wires on the inside where they exit conduit opening. Caulking is required to pre-vent air leakage into and condensate from forming inside the unit, control box, and on electrical controls.
- Install the unit in such a way as to allow necessary access to the coil/filter rack and blower/control compartment.
- Install the unit in a level position to ensure proper condensate drainage. Make sure unit is level in both directions within 1/8".
- Install the unit in accordance with any local code which may apply and the national codes. Latest editions are available from: "National Fire Protection Association, Inc., Batterysmarch Park, Quincy, MA 02269." These publications are:
 - ANSI/NFPA No. 70-(Latest Edition) National Electrical Code.
 - NFPA90A Installation of Air Conditioning and Ventilating Systems.
 - NFPA90B Installation of warm air heating and air conditioning systems.
- The equipment has been evaluated in accordance with the Code of Federal Regulations, Chapter XX, Part 3280.

2.3 CLEARANCES

- All units are designed for "0" inches clearance to combustible material on all cabinet surfaces.
- Some units require supply duct clearances and combustible floor bases depending on the heating kW. The following table should be used to determine these requirements:


Model Cabinet Size	17	21	24	
Model Designation kW	15	20	25	

Units with electric heating kW <u>above</u> that listed in the table require a one inch clearance to combustible material for the first three feet of supply plenum and ductwork. Additionally, if these units are installed downflow, a combustible floor base is required.

Units with electric heating kW equal to or less than the values listed in the table do not require supply ductwork clearances or combustible floor bases.

- Vertical units require clearance on at least one side of the unit for electrical connections. Horizontal units require clearance on either top or bottom for electrical connections. Refrigerant and condensate drain connections are made on the front of the unit.
- All units require 24 inches minimum access to the front of the unit for service.
- These units may be installed in either ventilated or nonventilated spaces.

2.4 MODEL NUMBER EXPLANATION

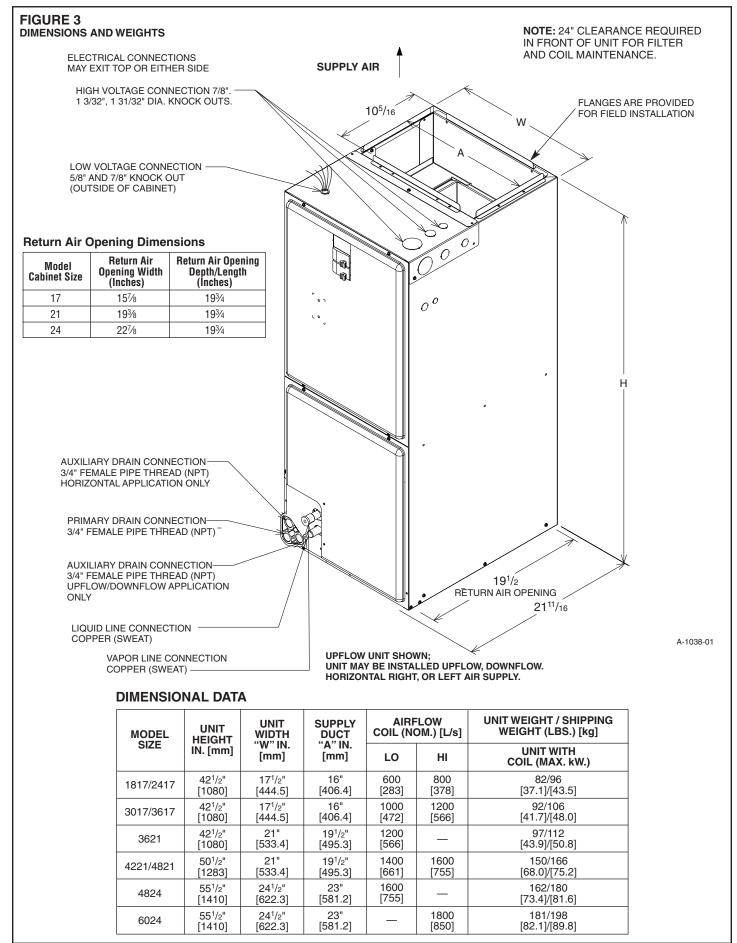
2.4A AVAILABLE MODELS

AVAILABLE MODELS AT A VOLTAGE

(-)HSA(L)-HM1817AA	(-)HLA(L)-HM2417AA
(-)HSA(L)-HM2417AA	(-)HLA(L)-HM3617AA
(-)HSA(L)-HM3017AA	(-)HLA(L)-HM4821AA
(-)HSA(L)-HM3617AA	(-)HLA(L)-HM4824AA
(-)HSA(L)-HM4221AA	(-)HLA(L)-HM6024AA
(-)HSA(L)-HM4821AA	

AVAILABLE MODELS AT J VOLTAGE

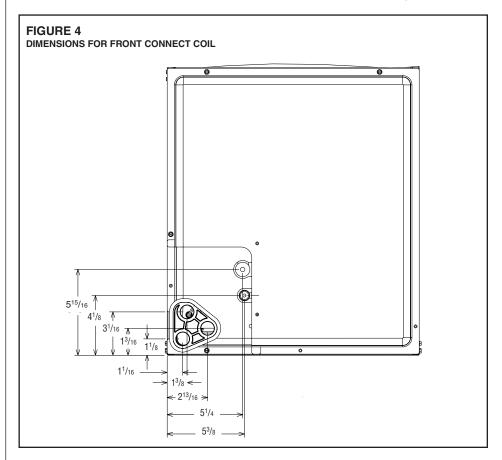
(-)HSA-HM1817JA	(-)HLA(L)-HM2417JA
(-)HSA-HM2417JA	(-)HLA(L)-HM3617JA
(-)HSA-HM3017JA	(-)HLA(L)-HM4821JA
(-)HSA-HM3617JA	(-)HLA(L)-HM4824JA
(-)HSA-HM3621JA	(-)HLA(L)-HM6024JA
(-)HSA-HM4221JA	
(-)HSA-HM4821JA	
(-)HSA-HM4824JA	
(-)HSA-HM6024JA	


AVAILABLE MODELS AT D VOLTAGE

(-)HSA(L)-HM3617DA (-)HSA(L)-HM3621DA
(-)HSA(L)-HM3621DA
(-)HSA(L)-HM4221DA
(-)HSA(L)-HM4821DA
(-)HSA(L)-HM4824DA
(-)HSA(L)-HM6024DA

Notes:

- Supply circuit protective devices may be fuses or "HACR" type circuit breakers.
- Largest motor load is included in single circuit and multiple circuit 1.
- If non-standard fuse size is specified, use next size larger fuse size.
- J Voltage (230V) single phase air handler is designed to be used with single or three phase 230 volt power. In the case of connecting 3-phase power to the air handler terminal block, bring only two leads to the terminal block. Cap, insulate and fully secure the third lead.
- (-)HSA-HM6024JA is ARI rated for three phase application only.
- The air handlers are shipped from the factory with the proper indoor coil installed, and cannot be ordered without a coil.
- The air handlers do not have an internal filter rack. An external filter rack or other means of filtration is required.


2.5 DIMENSIONS & WEIGHTS

3.0 APPLICATIONS

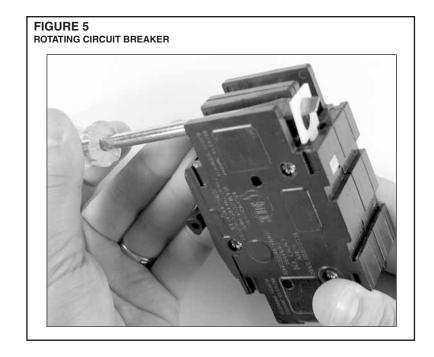
3.1 VERTICAL UPFLOW

- Vertical Upflow is the factory configuration for all models (see Figure 3).
- If a side return air opening is required, field fabricate a return air plenum with an opening large enough to supply unit and strong enough to support unit weight.
- If return air is to be ducted, install duct flush with floor. Use fireproof resilient gasket 1/8 to 1/4 in. thick between duct, unit and floor. Set unit on floor over opening

3.2 VERTICAL DOWNFLOW

Conversion to Vertical Downflow: A vertical upflow unit may be converted to vertical downflow. Remove the door and indoor coil and reinstall 180° from original position (see Figure 5).

 RXHB combustible floor base is used for all unit sizes. Unit must be centered on combustible base in the width dimension (14³/₈"). (See Section 14.0 for more information on the combustible floor base.)

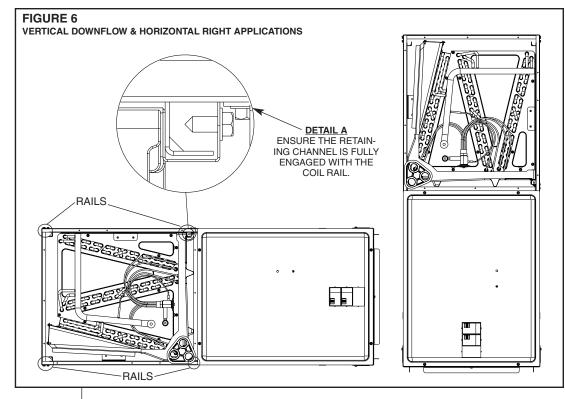

A WARNING

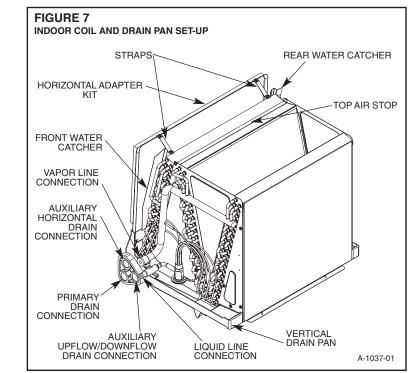
The RXHB-17, RXHB-21 or RXHB-24 combustible floor base is required when some units with electric heat are applied downflow on combustible flooring. Failure to use the base can cause a fire resulting in property damage, personal injury or death. See <u>CLEARANCES</u> for units requiring a combustible floor base. See the accessory section in this manual for combustible floor base RXHB.

3.3 HORIZONTAL

Horizontal left is the default factory configuration for "HM" (airflow direction) units.

Conversion to Horizontal: A vertical upflow unit (AU) may be converted to horizontal by removing the indoor coil and installing horizontal drain pan on coil as shown for right hand or left hand air supply. Reinstall coil in unit as shown for right or left hand air supply. See Figures 6 & 7. (See Section 14.0 for more information on the Horizontal Adapter Kit.)




IMPORTANT: To comply with certification agencies and the National Electric Code for horizontal right application, the circuit breaker(s) on field-installed electric heater kits must be re-installed per procedure below so that the breaker switch "on" position and marking is up and, "off" position and marking is down.

- To turn breaker(s): Rotate one breaker pair (circuit) at a time starting with the one on the right. Loosen both lugs on the load side of the breaker. Wires are bundles with wire ties, one bundle going to the right lug and one bundle going to the left lug.
- Using a screwdriver or pencil, lift white plastic tab with hole away from breaker until breaker releases from mounting opening (see Figure 5).
- With breaker held in hand, rotate breaker so that "on" position is up, "off" position is down with unit in planned vertical mounting position. Insert right wire bundle into top right breaker lug, ensuring all strands of all wires are inserted fully into lug, and no wire insulation is in lug.
- Tighten lug as tight as possible while holding circuit breaker. Check wires and make sure each wire is secure and none are loose. Repeat for left wire bundle in left top circuit breaker lug.
- Replace breaker by inserting breaker mounting tab opposite white pull tab in opening, hook mounting tab over edge in opening.
- With screwdriver or pencil, pull white tab with hole away from breaker while setting that side of breaker into opening. When breaker is in place, release tab, locking circuit breaker into location in opening.
- Repeat above operation for remaining breaker(s) (if more than one is provided).
- Replace single point wiring jumper bar, if it is used, on line side of breaker and tighten securely.
- Double check wires and lugs to make sure all are secure and tight. Check to make sure unit wiring to circuit breaker load lugs match that shown on the unit wiring diagram.

🏔 WARNING

The RXHB-17, RXHB-21, or RXHB-24 combustible floor base is required when certain units are applied downflow on combustible flooring. Failure to use the base can cause a fire resulting in property damage, personal injury or death. See <u>clearances</u> for units requiring a combustible floor base. See the accessory section in this manual for combustible floor base RXHB-.

A CAUTION

Horizontal units must be configured for right hand air supply or left hand air supply. Horizontal drain pan must be located under indoor coil. Failure to use the drain pan can result in property damage.

- Rotate unit into the downflow position, with the coil compartment on top and the blower compartment on bottom.
- Reinstall the indoor coil 180° from original position. Ensure the retaining channel is fully engaged with the coil rail. (See Figure 6, Detail A.)
- Secondary drain pan kits RXBM- are required when the unit is configured for the horizontal right position over a finished ceiling and/or living space. (See Section 14.0: Accessories - Kits - Parts.)

IMPORTANT: Units cannot be installed horizontally laying on or suspended from the back of the unit.

Conversion in Horizontal Direction: Horizontal left-hand supply can be changed to horizontal right-hand supply by removing the indoor coil and reinstalling 180° from original. (See Figure 5.)

3.4 INSTALLATION IN AN UNCONDITIONED SPACE

IMPORTANT: There are two pairs of coil rails in the air handler for default and counter flow application. If the air handler is installed in an unconditioned space, the two unused coil rails should be removed to minimize air handler surface sweating. (See Figure 5.) The coil rails can be easily removed by taking off the 6 mounting screws from both sides of the cabinet.

4.0 ELECTRICAL WIRING

Field wiring must comply with the National Electric Code (C.E.C. in Canada) and any applicable local ordinance.

🛦 WARNING

Disconnect all power to unit before installing or servicing. More than one disconnect switch may be required to de-energize the equipment. Hazardous voltage can cause severe personal injury or death.

4.1 POWER WIRING

It is important that proper electrical power is available for connection to the unit model being installed. See the unit nameplate, wiring diagram and electrical data in the installation instructions.

- If required, install a branch circuit disconnect of adequate size, located within sight of, and readily accessible to the unit.
- **IMPORTANT:** After the Electric Heater is installed, units may be equipped with one, two, or three 30/60 amp. circuit breakers. These breaker(s) protect the internal wiring in the event of a short circuit and serve as a disconnect. Circuit breakers installed within the unit do not provide over-current protection of the supply wiring and therefore may be sized larger than the branch circuit protection.
- Supply circuit power wiring must be 75°C minimum copper conductors only. See Electrical Data in this section for ampacity, wire size and circuit protector requirement. Supply circuit protective devices may be either fuses or "HACR" type circuit breakers.
- Power wiring may be connected to either the right, left side or top. Three ⁷/₈", 1³/₃₂", 1³¹/₃₂" dia. concentric knockouts are provided for connection of power wiring to unit.
- Power wiring is connected to the power terminal block in unit control compartment.

4.2 CONTROL WIRING

IMPORTANT: Class 2 low voltage control wire should not be run in conduit with power wiring and must be separated from power wiring, unless class 1 wire of proper voltage rating is used.

- Low voltage control wiring should be 18 Awg. color-coded. For lengths longer than 100 ft., 16 Awg. wire should be used.
- Low voltage control connections are made to low voltage pigtails extending from top of air handler (upflow position see Figure 3). Connections for control wiring are made with wire nuts. Control wiring knockouts (5/8 and 7/8) are also provided on the right and left side of the unit for side connection.
- See wiring diagrams attached to indoor and outdoor sections to be connected, or control wiring diagram booklet supplied with outdoor heat pump section for wiring connection.
- Make sure, after installation, separation of control wiring and power wiring has been maintained.

4.3 GROUNDING

🛦 WARNING

The unit must be permanently grounded. Failure to do so can result in electrical shock causing personal injury or death.

- Grounding may be accomplished by grounding metal conduit when installed in accordance with electrical codes to the unit cabinet.
- Grounding may also be accomplished by attaching ground wire(s) to ground lug(s) provided in the unit wiring compartment.
- Ground lug(s) are located close to wire entrance on left side of unit (upflow). Lug(s) may be moved to marked locations near wire entrance on right side of unit (upflow), if alternate location is more convenient.
- Use of multiple supply circuits require grounding of each circuit to lug(s) provided in unit.

4.4 COPPER WIRE SIZE

COPPER WIRE SIZE - AWG. (3% VOLTAGE DROP)

200 [61]	12	10	8	8	8	6	6	6	4	4	3	3	2	2	1	0	00
150 [46]	12	10	10	10	8	8	6	6	6	4	4	3	3	2	1	0	00
100 [30]	14	12	10	10	8	8	8	6	6	4	4	3	3	2	1	0	00
50 [15]	14	12	10	10	8	8	8	6	6	4	4	3	3	2	1	0	00
	15	20	25	30	35	40	45	50	60	70	80	90	100	110	125	150	175
						SUF	PPLY CI	RCUIT	AMPAC	ITY							
				NOTE	: WIRE	BASED	ON CO	PPER C	ONDUC	CTORS	75°C MI	NIMUM	RATINO	Э.			
	FOR MORE THAN 3 CONDUCTORS IN A RACEWAY OR CABLE, SEE																
					N.E.C.	FOR D	ERATIN	G THE /	AMPAC	ITY OF	EACH C	ONDUC	CTOR.				
	100 [30]	100 [30] 14 50 [15] 14	100 [30] 14 12 50 [15] 14 12	100 30 14 12 10 50 15 14 12 10	100 30 14 12 10 10 50 15 14 12 10 10 105 15 14 12 10 10 105 15 14 12 10 10 105 20 25 30 30	100 301 14 12 10 10 8 50 15 14 12 10 10 8 15 20 25 30 35 NOTE: WIRE FOR M	100 30 14 12 10 10 8 8 50 15 14 12 10 10 8 8 50 15 14 12 10 10 8 8 15 20 25 30 35 40 SUF NOTE: WIRE BASED FOR MORE TI	100 30 14 12 10 10 8 8 8 50 15 14 12 10 10 8 8 8 50 15 14 12 10 10 8 8 8 15 20 25 30 35 40 45 SUPPLY CI NOTE: WIRE BASED ON CO FOR MORE THAN 3 C	100 30 14 12 10 10 8 8 6 50 15 14 12 10 10 8 8 8 6 50 15 14 12 10 10 8 8 8 6 15 20 25 30 35 40 45 50 SUPPLY CIRCUIT / NOTE: WIRE BASED ON COPPER OF FOR MORE THAN 3 CONDUCT	100 30 14 12 10 10 8 8 6 6 50 15 14 12 10 10 8 8 8 6 6 50 15 14 12 10 10 8 8 8 6 6 15 20 25 30 35 40 45 50 60 SUPPLY CIRCUIT AMPAC NOTE: WIRE BASED ON COPPER CONDUC FOR MORE THAN 3 CONDUCTORS	100 30 14 12 10 10 8 8 8 6 6 4 50 15 14 12 10 10 8 8 8 6 6 4 50 15 14 12 10 10 8 8 8 6 6 4 15 20 25 30 35 40 45 50 60 70 SUPPLY CIRCUIT AMPACITY NOTE: WIRE BASED ON COPPER CONDUCTORS FOR MORE THAN 3 CONDUCTORS IN A RA	100 30 14 12 10 10 8 8 6 6 4 4 50 15 14 12 10 10 8 8 8 6 6 4 4 50 15 14 12 10 10 8 8 8 6 6 4 4 15 20 25 30 35 40 45 50 60 70 80 SUPPLY CIRCUIT AMPACITY NOTE: WIRE BASED ON COPPER CONDUCTORS 75°C MI FOR MORE THAN 3 CONDUCTORS IN A RACEWAY	100 30 14 12 10 10 8 8 8 6 6 4 4 3 50 15 14 12 10 10 8 8 8 6 6 4 4 3 50 15 14 12 10 10 8 8 8 6 6 4 4 3 15 20 25 30 35 40 45 50 60 70 80 90 SUPPLY CIRCUIT AMPACITY NOTE: WIRE BASED ON COPPER CONDUCTORS 75°C MINIMUM FOR MORE THAN 3 CONDUCTORS IN A RACEWAY OR CA	100 30 14 12 10 10 8 8 8 6 6 4 4 3 3 50 15 14 12 10 10 8 8 8 6 6 4 4 3 3 50 15 14 12 10 10 8 8 8 6 6 4 4 3 3 15 20 25 30 35 40 45 50 60 70 80 90 100 SUPPLY CIRCUIT AMPACITY NOTE: WIRE BASED ON COPPER CONDUCTORS 75°C MINIMUM RATING	100 30 14 12 10 10 8 8 6 6 4 4 3 3 2 50 15 14 12 10 10 8 8 6 6 4 4 3 3 2 50 15 14 12 10 10 8 8 6 6 4 4 3 3 2 15 20 25 30 35 40 45 50 60 70 80 90 100 110 SUPPLY CIRCUIT AMPACITY NOTE: WIRE BASED ON COPPER CONDUCTORS 75°C MINIMUM RATING. FOR MORE THAN 3 CONDUCTORS IN A RACEWAY OR CABLE, SEE	100 30 14 12 10 10 8 8 8 6 6 4 4 3 3 2 1 50 15 14 12 10 10 8 8 8 6 6 4 4 3 3 2 1 50 15 14 12 10 10 8 8 8 6 6 4 4 3 3 2 1 15 20 25 30 35 40 45 50 60 70 80 90 100 110 125 SUPPLY CIRCUIT AMPACITY NOTE: WIRE BASED ON COPPER CONDUCTORS 75°C MINIMUM RATING. FOR MORE THAN 3 CONDUCTORS IN A RACEWAY OR CABLE, SEE	100 30 14 12 10 10 8 8 6 6 4 4 3 3 2 1 0 50 15 14 12 10 10 8 8 8 6 6 4 4 3 3 2 1 0 50 15 14 12 10 10 8 8 8 6 6 4 4 3 3 2 1 0 15 20 25 30 35 40 45 50 60 70 80 90 100 110 125 150 SUPPLY CIRCUIT AMPACITY NOTE: WIRE BASED ON COPPER CONDUCTORS 75°C MINIMUM RATING. FOR MORE THAN 3 CONDUCTORS IN A RACEWAY OR CABLE, SEE

4.5 BLOWER MOTOR ELECTRICAL DATA

4.5A Blower Motor Electrical Data: (-)HSA/(-)HSL

NOMINAL COOLING CAPACITY TONS	VOLTAGE	PHASE	HERTZ	HP	RPM	SPEEDS	CIRCUIT AMPS.	MINIMUM CIRCUIT AMPACITY	MAXIMUM CIRCUIT PROTECTOR
1 ¹ /2				1/5	1075	2	2.3	3.0	15
2				1/5	1075	2	3.8	5.0	15
2 ¹ /2	115	1	60	1/4	1075	2	4.7	6.0	15
3	115	I	60	1/3	1075	2	6.1	8.0	15
31/2				1/2	1075	2	7.9	10.0	15
4				3/4	1075	2	8.4	11.0	15
1 ¹ /2				1/5	1075	2	1.7	3.0	15
2			60	1/5	1075	2	1.7	3.0	15
2 ¹ /2	000/040	1 0 0		1/4	1075	2	2.5	4.0	15
3	208/240	1 & 3		1/3	1075	2	2.5	4.0	15
3 ¹ /2				1/2	1075	2	5.2	7.0	15
4				3/4	1075	2	5.2	7.0	15
5	208/240	3	60	3/4	1075	2	5.2	7.0	15
3				1/3	1075	2	1.4	2.0	15
31/2	400	0		1/3	1075	2	2.2	3.0	15
4	480	3	60	3/4	1075	2	2.2	3.0	15
5				3/4	1075	2	2.2	3.0	15

4.5B Blower Motor Electrical Data: (-)HLA/(-)HLL

NOMINAL COOLING CAPACITY TONS	VOLTAGE	PHASE	HERTZ	HP	RPM	SPEEDS	CIRCUIT AMPS.	MINIMUM CIRCUIT AMPACITY	MAXIMUM CIRCUIT PROTECTOR
1 ¹ /2 & 2				1/3	300-1100	4	1.6	2	15
2 ¹ / ₂ & 3	208/240	1 & 3	60	1/2	300-1100	4	2.7	4	15
3 ¹ /2 & 4	200/240		00	3/4	300-1100	4	3.8	5	15
5				3/4	300-1100	4	4.6	6	15
1 ¹ /2 & 2				1/3	300-1100	4	4.8	6	15
2 ¹ / ₂ & 3	115	1	60	1/2	300-1100	4	6.8	9	15
3 ¹ /2 & 4			00	3/4	300-1100	4	8.4	11	15
5				3/4	300-1100	4	8.4	11	15

4.6 ELECTRIC HEAT ELECTRICAL DATA

Installation of the UL Listed original equipment manufacturer provided heater kits listed in the following table is recommended for all auxiliary heating requirements.

4.6A ELECTRIC HEAT ELECTRICAL DATA: (-)HSA/(-)HSL

COOLING CAPACITY TONS CABINET SIZE	MODEL NO.	HEATER KW 208/240V	PH/HZ	NO. ELEMENTS - KW PER	TYPE SUPPLY CIRCUIT SINGLE CIRCUIT MULTIPLE CIRCUIT	CIRCUIT AMPS.	MOTOR AMPACITY	MINIMUM CIRCUIT AMPACITY	MAXIMUM CIRCUIT PROTECTION
	RXBH-17A03J	2.25/3.0	1/60	1-3.0	SINGLE	10.8/12.5	1.7	16/18	20/20
	RXBH-17A05J	3.6/4.8	1/60	1-4.8	SINGLE	17.3/20.0	1.7	24/28	25/30
	RXBH-17A07J	5.4/7.2	1/60	2-3.6	SINGLE	26.0/30.0	1.7	35/40	35/40
	RXBH-17A10J	7.2/9.6	1/60	2-4.8	SINGLE	34.6/40.0	1.7	46/53	50/60
(-)HSA/(-)HSL	RXBH-17A13J	9.4/12.5	1/60	3-4.17	SINGLE	45.1/52.1	1.7	59/68	60/70
<u>1-1/2 & 2</u>		3.1/4.2	1/60	1-4.17	MULTIPLE CKT 1	15.0/17.4	1.7	21/24	25/25
17	RXBH-17A13J	6.3/8.3	1/60	2-4.17	MULTIPLE CKT 2	30.1/34.7	0	38/44	40/45
	RXBH-17A07C	5.4/7.2	3/60	3-2.4	SINGLE	15.0/17.3	1.7	21/24	25/25
	RXBH-17A10C	7.2/9.6	3/60	3-3.2	SINGLE	20.0/23.1	1.7	28/31	30/35
	RXBH-17A13C	9.4/12.5	3/60	3-4.17	SINGLE	26.1/30.1	1.7	35/40	35/40
	RXBH-17A03J	2.25/3.0	1/60	1-3.0	SINGLE	10.8/12.5	2.5	17/19	20/20
	RXBH-17A05J	3.6/4.8	1/60	1-4.8	SINGLE	17.3/20.0	2.5	25/29	25/30
	RXBH-17A07J	5.4/7.2	1/60	2-3.6	SINGLE	26.0/30.0	2.5	36/41	40/45
	RXBH-17A10J	7.2/9.6	1/60	2-4.8	SINGLE	34.6/40.0	2.5	47/54	50/60
	RXBH-17A13J	9.4/12.5	1/60	3-4.17	SINGLE	45.1/52.1	2.5	60/69	60/70
		3.1/4.2	1/60	1-4.17	MULTIPLE CKT 1	15.0/17.4	2.5	22/25	25/25
(-)HSA/(-)HSL	RXBH-17A13J	6.3/8.3	1/60	2-4.17	MULTIPLE CKT 2	30.1/34.7	0	38/44	40/45
<u>2-1/2 & 3</u>	RXBH-17A15J	10.8/14.4	1/60	3-4.8	SINGLE	51.9/60.0	2.5	68/79	70/80
17	RADIFI/A155	3.6/4.8	1/60	1-4.8	MULTIPLE CKT 1	17.3/20.0	2.5	25/29	25/30
17	RXBH-17A15J		1/60						
		7.2/9.6		2-4.8	MULTIPLE CKT 2	34.6/40.0	0	44/50	45/50
	RXBH-17A18J	12.8/17.0	1/60	3-5.68	SINGLE	61.6/70.8	2.5	81/92	90/100
	RXBH-17A18J	4.3/5.7	1/60	1-5.68	MULTIPLE CKT 1	20.5/23.6	2.5	29/33	30/35
		8.5/11.3	1/60	2-5.68	MULTIPLE CKT 2	41.1/47.2	0	52/59	60/60
	RXBH-17A07C	5.4/7.2	3/60	3-2.4	SINGLE	15.0/17.3	2.5	22/25	25/25
	RXBH-17A10C	7.2/9.6	3/60	3-3.2	SINGLE	20.0/23.1	2.5	29/32	30/35
	RXBH-17A13C	9.4/12.5	3/60	3-4.17	SINGLE	26.1/30.1	2.5	36/41	40/45
	RXBH-17A15C	10.8/14.4	3/60	3-4.8	SINGLE	30.0/34.6	2.5	41/47	45/50
	RXBH-17A18C	12.8/17.0	3/60	3-5.68	SINGLE	35.5/41.0	2.5	48/55	50/60
	RXBH-17A07D	7.2	3/60	2-3.6	SINGLE	8.7	1.4	13	15
	RXBH-17A10D	9.6	3/60	3-3.2	SINGLE	11.6	1.4	17	20
	RXBH-17A15D	14.4	3/60	3-4.8	SINGLE	17.3	1.4	24	25
	RXBH-17A18D	17	3/60	3-5.68	SINGLE	20.4	1.4	28	30
	RXBH-24A05J	3.6/4.8	1/60	1-4.8	SINGLE	17.3/20.0	2.5	25/29	25/30
	RXBH-24A07J	5.4/7.2	1/60	2-3.6	SINGLE	26.0/30.0	2.5	36/41	40/45
	RXBH-24A10J	7.2/9.6	1/60	2-4.8	SINGLE	34.6/40.0	2.5	47/54	50/60
	RXBH-24A15J	10.8/14.4	1/60	3-4.8	SINGLE	51.9/60.0	2.5	68/79	70/80
	RXBH-24A15J	3.6/4.8	1/60	1-4.8	MULTIPLE CKT 1	17.3/20.0	2.5	25/29	25/30
(-)HSA/(-)HSL		7.2/9.6	1/60	2-4.8	MULTIPLE CKT 2	34.6/40.0	0	44/50	45/50
<u>3</u>	RXBH-24A18J	12.8/17.0	1/60	4-4.26	SINGLE	61.6/70.8	2.5	81/92	90/100
21	RXBJ-24A18J	6.4/8.5	1/60	2-4.26	MULTIPLE CKT 1	30.8/35.4	2.5	42/48	45/50
		6.4/8.5	1/60	2-4.26	MULTIPLE CKT 2	30.8/35.4	0	39/45	40/45
	RXBH-24A07C	5.4/7.2	3/60	3-2.4	SINGLE	15.0/17.3	2.5	22/25	25/25
	RXBH-24A10C	7.2/9.6	3/60	3-3.2	SINGLE	20.0/23.1	2.5	29/32	30/35
	RXBH-24A15C	10.8/14.4	3/60	3-4.8	SINGLE	30.0/34.6	2.5	41/47	45/50
	RXBH-24A18C	12.8/17.0	3/60	3-5.68	SINGLE	35.5/41.0	2.5	48/55	50/60
	RXBH-24A07D	7.2	3/60	2-3.6	SINGLE	8.7	1.4	13	15
	RXBH-24A10D	9.6	3/60	3-3.2	SINGLE	11.6	1.4	17	20
	RXBH-24A15D	14.4	3/60	3-4.8	SINGLE	17.3	1.4	24	25
	RXBH-24A18D	17	3/60	3-5.68	SINGLE	20.4	1.4	28	30

4.6A ELECTRIC HEAT ELECTRICAL DATA: (-)HSA/(-)HSL - continued

COOLING CAPACITY TONS CABINET SIZE	MODEL NO.	HEATER KW 208/240V	PH/HZ	NO. ELEMENTS - KW PER	TYPE SUPPLY CIRCUIT SINGLE CIRCUIT MULTIPLE CIRCUIT	CIRCUIT AMPS.	MOTOR AMPACITY	MINIMUM CIRCUIT AMPACITY	MAXIMUM CIRCUIT PROTECTION
	RXBH-24A05J	3.6/4.8	1/60	1-4.8	SINGLE	17.3/20.0	4.0	27/30	30/30
	RXBH-24A07J	5.4/7.2	1/60	2-3.6	SINGLE	26.0/30.0	4.0	38/43	40/45
	RXBH-24A10J	7.2/9.6	1/60	2-4.8	SINGLE	34.6/40.0	4.0	49/55	50/60
	RXBH-24A15J	10.8/14.4	1/60	3-4.8	SINGLE	51.9/60.0	4.0	70/80	70/80
	RXBH-24A15J	3.6/4.8	1/60	1-4.8	MULTIPLE CKT 1	17.3/20.0	4.0	27/30	30/30
	11XD11-24A133	7.2/9.6	1/60	2-4.8	MULTIPLE CKT 2	34.6/40.0	0.0	44/50	45/50
	RXBH-24A18J	12.8/17	1/60	4-4.26	SINGLE	61.6/70.8	4.0	82/94	90/100
	RXBH-24A18J	6.4/8.5	1/60	2-4.26	MULTIPLE CKT 1	30.8/35.4	4.0	44/50	45/50
		6.4/8.5	1/60	2-4.26	MULTIPLE CKT 2	30.8/35.4	0.0	39/45	40/45
	RXBH-24A20J	14.4/19.2	1/60	4-4.8	SINGLE	69.2/80	4.0	92/105	100/110
	RXBH-24A20J	7.2/9.6	1/60	2-4.8	MULTIPLE CKT 1	34.6/40.0	4.0	49/55	50/60
(-)HSA/(-)HSL		7.2/9.6	1/60	2-4.8	MULTIPLE CKT 2	34.6/40.0	0.0	44/50	45/50
<u>3-1/2 & 4</u>	RXBH-24A25J	18.0/24.0	1/60	6-4.0	SINGLE	86.4/99.9	4.0	113/130	125/150
21	RXBH-24A25J	6.0/8.0	1/60	2-4.0	MULTIPLE CKT 1	28.8/33.3	4.0	42/47	45/50
and	(4-ton only)	6.0/8.0	1/6	2-4.0	MULTIPLE CKT 2	28.8/33.3	0.0	36/42	40/45
<u>4</u>		6.0/8.0	1/60	2-4.0	MULTIPLE CKT 3	28.8/33.3	0.0	36/42	40/45
24	RXBH-24A07C	5.4/7.2	3/60	3-2.4	SINGLE	15.0/17.3	4.0	24/27	25/30
	RXBH-24A10C	7.2/9.6	3/60	3-3.2	SINGLE	20.0/23.1	4.0	30/34	30/35
	RXBH-24A15C	10.8/14.4	3/60	3-4.8	SINGLE	30.0/34.6	4.0	43/49	45/50
	RXBH-24A18C		3/60	3-2.84	SINGLE	35.6/41.0	4.0	50/57	50/60
	RXBH-24A20C	14.4/19.2	3/60	3-3.2	SINGLE	40.0/46.2	4.0	55/63	60/70
	RXBH-24A20C	7.2/9.6	3/60	3-3.2	MULTIPLE CKT 1	20.0/23.1	4.0	30/34	30/35
	10.0112.0200	7.2/9.6	3/60	3-3.2	MULTIPLE CKT 2	20.0/23.1	0.0	25/29	25/30
	RXBH-24A25C	18.0/24.0	3/60	6-4.0	SINGLE	50.0/57.8	4.0	68/78	70/80
	RXBH-24A25C	9.0/12.0	3/60	3-4.0	MULTIPLE CKT 1	25.0/28.9	4.0	37/42	40/45
	(4-ton only)	9.0/12.0	3/60	3-4.0	MULTIPLE CKT 2	25.0/28.9	0.0	32/37	35/40
	RXBH-24A07D	7.2	3/60	2-3.6	SINGLE	8.7	2.2	14	15
	RXBH-24A10D	9.6	3/60	3-3.2	SINGLE	11.6	2.2	18	20
	RXBH-24A15D	14.4	3/60	3-4.8	SINGLE	17.3	2.2	25	25
	RXBH-24A18D	17	3/60	3-5.68	SINGLE	20.4	2.2	29	30
	RXBH-24A20D	19.2	3/60	6-3.2	SINGLE	23.2	2.2	32	35
	RXBH-24A25D (4-ton only)	24.0	3/60	6-4.0	SINGLE	28.8	2.2	39	40
	RXBH-24A07C	5.4/7.2	3/60	3-2.4	SINGLE	15.0/17.3	4.4	25/28	25/30
	RXBH-24A10C	7.2/9.6	3/60	3-3.2	SINGLE	20.0/23.1	4.4	31/35	35/35
	RXBH-24A15C	10.8/14.4	3/60	3-4.8	SINGLE	30.0/34.6	4.4	43/49	45/50
	RXBH-24A18C	12.8/17.0	3/60	3-2.84	SINGLE	35.6/41.0	4.4	50/57	50/60
	RXBH-24A20C		3/60	3-3.2	SINGLE	40.0/46.2	4.4	56/64	60/70
	RXBH-24A20C	7.2/9.6	3/60	3-3.2	MULTIPLE CKT 1	20.0/23.1	4.4	31/35	35/35
		7.2/9.6	3/60	3-3.2	MULTIPLE CKT 2	20.0/23.1	0	25/29	25/30
(-)HSA/(-)HSL	RXBH-24A25C		3/60	6-4.0	SINGLE	50.0/57.8	4.4	68/78	70/80
<u>5</u> 24	RXBH-24A25C	9.0/12.0	3/60	3-4.0	MULTIPLE CKT 1	25.0/28.9	4.4	37/42	40/45
24		9.0/12.0	3/60	3-4.0	MULTIPLE CKT 2	25.0/28.9	0	32/37	35/40
	RXBH-24A30C		3/60	6-4.8	SINGLE	60.0/69.4	4.4	81/93	90/100
	RXBH-24A30C	10.8/14.4	3/60	3-4.8	MULTIPLE CKT 1	30.0/34.7	4.4	43/49	45/50
		10.8/14.4	3/60	3-4.8	MULTIPLE CKT 2	30.0/34.7	0	38/44	40/45
	RXBH-24A07D	7.2	3/60	2-3.6	SINGLE	8.7	2.2	14	15
	RXBH-24A10D	9.6	3/60	3-3.2	SINGLE	11.6	2.2	18	20
	RXBH-24A15D	14.4	3/60	3-4.8	SINGLE	17.3	2.2	25	25
	RXBH-24A18D	17	3/60	3-5.68	SINGLE	20.4	2.2	29	30
	RXBH-24A20D	19.2	3/60	6-3.2	SINGLE	23.2	2.2	32	35
	RXBH-24A25D	24.0	3/60	6-4.0	SINGLE	28.8	2.2	39	40
	RXBH-24A30D	28.8	3/60	6-4.8	SINGLE	34.6	2.2	46	50

- NOTES:
 Electric heater BTUH (heater watts + motor watts) x 3.414 (see airflow table for motor watts.)
 Supply circuit protective devices may be fuses or "HACR" type circuit breakers.
 If non-standard fuse size is specified, use next size larger standard fuse size.
 Largest motor load is included in single circuit or circuit 1 of multiple circuits.
 Heater loads are balanced on 3 phase models with 3 or 6 heaters only.
 No electrical heating elements are permitted to be used with A Voltage (115V) air handler.
 J Voltage (230V) signal phase air handler is designed to be used with single or three phase 230 volt electric heaters. In the case of connecting 3 phase power to air handler terminal block without the heater, bring only two leads to terminal block, cap, insulate and fully secure the third lead.
 Do not use 480 volts electrical heaters on 230 volts air handler.
 Do not use 230 volts electrical heaters on 480 volts air handler.
- Do not use 230 volts electrical heaters on 480 volts air handler. If the kit is listed under both single and multiple circuits, the kit is shipped from factory as multiple circuits. For single phase application, Jumper bar kit RXBJ-A21 and RXBJ-A31 can be used to convert multiple circuits to a single supply circuit. Refer to Accessory Section for details.

4.6B Electric Heat Electrical Data: (-)HLA/(-)HLL Installation of the UL Listed original equipment manufacturer provided heater kits listed in the following table is recommended for all auxiliary heating requirements.

COOLING CAPACITY TONS CABINET SIZE	MODEL NO.	HEATER KW 208/240V	PH/HZ	NO. ELEMENTS - KW PER	TYPE SUPPLY CIRCUIT SINGLE CIRCUIT MULTIPLE CIRCUIT	CIRCUIT AMPS.	MOTOR AMPACITY	MINIMUM CIRCUIT AMPACITY	MAXIMUM CIRCUIT PROTECTION
	RXBH-17A03J	2.25/3.0	1/60	1-3.0	SINGLE	10.8/12.5	1.6	16/18	20/20
	RXBH-17A05J	3.6/4.8	1/60	1-4.8	SINGLE	17.3/20.0	1.6	24/27	25/30
	RXBH-17A07J	5.4/7.2	1/60	2-3.6	SINGLE	26.0/30.0	1.6	35/40	35/40
	RXBH-17A10J	7.2/9.6	1/60	2-4.8	SINGLE	34.6/40.0	1.6	46/52	50/60
(-)HLA/(-)HLL	RXBH-17A13J	9.4/12.5	1/60	3-4.17	SINGLE	45.1/52.1	1.6	59/68	60/70
<u>1-1/2 & 2</u>		3.1/4.2	1/60	1-4.17	MULTIPLE CKT 1	15.0/17.4	1.6	21/24	25/25
17	RXBH-17A13J	6.3/8.3	1/60	2-4.17	MULTIPLE CKT 2	30.1/34.7	0	38/44	40/45
17	RXBH-17A07C	5.4/7.2	3/60	3-2.4	SINGLE	15.0/17.3	1.6	21/24	25/25
	RXBH-17A10C	7.2/9.6	3/60	3-3.2	SINGLE	20.0/23.1	1.6	27/31	30/35
	RXBH-17A13C	9.4/12.5	3/60	3-4.17	SINGLE	26.1/30.1	1.6	35/40	35/40
	RXBH-17A03J	2.25/3.0	1/60	1-3.0	SINGLE	10.8/12.5	2.7	17/19	20/20
	RXBH-17A05J	3.6/4.8	1/60	1-4.8	SINGLE	17.3/20.0	2.7	25/29	25/30
	RXBH-17A07J	5.4/7.2	1/60	2-3.6	SINGLE	26.0/30.0	2.7	36/41	40/45
	RXBH-17A10J	7.2/9.6	1/60	2-4.8	SINGLE	34.6/40.0	2.7	47/54	50/60
	RXBH-17A13J	9.4/12.5	1/60	3-4.17	SINGLE	45.1/52.1	2.7	60/69	60/70
		3.1/4.2	1/60	1-4.17	MULTIPLE CKT 1	15.0/17.4	2.7	23/26	25/30
(-)HLA/(-)HLL	RXBH-17A13J	6.3/8.3	1/60	2-4.17	MULTIPLE CKT 2	30.1/34.7	0	38/44	40/45
2-1/2 & 3	RXBH-17A15J	10.8/14.4	1/60	3-4.8	SINGLE	51.9/60.0	2.7	69/79	70/80
17		3.6/4.8	1/60	1-4.8	MULTIPLE CKT 1	17.3/20.0	2.7	25/29	25/30
17	RXBH-17A15J	7.2/9.6	1/60	2-4.8	MULTIPLE CKT 2	34.6/40.0	0	44/50	45/50
	RXBH-17A18J	12.8/17.0	1/60	3-5.68	SINGLE	61.6/70.8	2.7	81/92	90/100
	RADIFI/ATOJ	4.3/5.7	1/60	1-5.68	MULTIPLE CKT 1	20.5/23.6	2.7	29/33	30/35
	RXBH-17A18J	8.5/11.3	1/60	2-5.68	MULTIPLE CKT 2	41.1/47.2	0	52/59	60/60
	RXBH-17A07C		3/60						
		5.4/7.2		3-2.4	SINGLE	15.0/17.3	2.7	23/25	25/25
	RXBH-17A10C	7.2/9.6	3/60	3-3.2	SINGLE	20.0/23.1	2.7	29/33	30/35
	RXBH-17A13C	9.4/12.5	3/60	3-4.17	SINGLE	26.1/30.1	2.7	36/41	40/45
	RXBH-17A15C	10.8/14.4	3/60	3-4.8	SINGLE	30.0/34.6	2.7	41/47	45/50
	RXBH-17A18C	12.8/17.0	3/60	3-5.68	SINGLE	35.5/41.0	2.7	48/55	50/60
	RXBH-24A05J	3.6/4.8	1/60	1-4.8	SINGLE	17.3/20.0	3.8	27/30	30/30
	RXBH-24A07J	5.4/7.2	1/60	2-3.6	SINGLE	26.0/30.0	3.8	38/43	40/45
	RXBH-24A10J	7.2/9.6	1/60	2-4.8	SINGLE	34.6/40.0	3.8	48/55	50/60
	RXBH-24A15J	10.8/14.4	1/60	3-4.8	SINGLE	51.9/60.0	3.8	70/80	70/80
	RXBH-24A15J	3.6/4.8	1/60	1-4.8	MULTIPLE CKT 1	17.3/20.0	3.8	27/30	30/30
		7.2/9.6	1/60	2-4.8	MULTIPLE CKT 2	34.6/40.0	0.0	44/50	45/50
	RXBH-24A18J	12.8/17.0	1/60	4-4.26	SINGLE	61.6/70.8	3.8	82/94	90/100
	RXBJ-24A18J	6.4/8.5	1/60	2-4.26	MULTIPLE CKT 1	30.8/35.4	3.8	44/49	45/50
		6.4/8.5	1/60	2-4.26	MULTIPLE CKT 2	30.8/35.4	0.0	39/45	40/45
(-)HLA/(-)HLL	RXBH-24A20J	14.4/19.2	1/60	4-48	SINGLE	69.2/80	3.8	92/105	100/110
<u>3-1/2 & 4</u>		7.2/9.6	1/60	2-4.8	MULTIPLE CKT 1	34.6/40.0	3.8	48/55	50/60
21	RXBH-24A20J	7.2/9.6	1/60	2-4.8	MULTIPLE CKT 2	34.6/40.0	0.0	44/50	45/50
	RXBH-24A25J	18.0/24.0	1/60	6-4.0	SINGLE	86.4/99.9	3.8	113/130	125/150
	RXBH-24A25J	6.0/8.0	1/60	2-4.0	MULTIPLE CKT 1	28.8/33.3	3.8	41/47	45/50
	(4-ton only)	6.0/8.0	1/60	2-4.0	MULTIPLE CKT 2	28.8/33.3	0.0	36/42	40/45
		6.0/8.0	1/60	2-4.0	MULTIPLE CKT 3	28.8/33.3	0.0	36/42	40/45
	RXBH-24A07C	5.4/7.2	3/60	3-2.4	SINGLE	15.0/17.3	3.8	24/27	25/30
	RXBH-24A10C	7.2/9.6	3/60	3-3.2	SINGLE	20.0/23.1	3.8	30/34	30/35
	RXBH-24A15C	10.8/14.4	3/60	3-4.8	SINGLE	30.0/34.6	3.8	43/48	45/50
	RXBH-24A18C	12.8/17.0	3/60	3-2.84	SINGLE	35.6/41.0	3.8	50/56	50/60
	RXBH-24A20C	14.4/19.2	3/60	3-3.2	SINGLE	40.0/46.2	3.8	55/63	60/70
		7.2/9.6	3/60	3-3.2	MULTIPLE CKT 1	20.0/23.1	3.8	30/34	30/35
	RXBH-24A20C	7.2/9.6	3/60	3-3.2	MULTIPLE CKT 2	20.0/23.1	0.0	25/29	25/30
	RXBH-24A25C	18.0/24.0	3/60	6-4.0	SINGLE	50.0/57.8	3.8	68/77	70/80
							,		
	RXBH-24A25C	9.0/12.0	3/60	3-4.0	MULTIPLE CKT 1	25.0/28.9	3.8	36/41	40/45

4.6B Electric Heat Electrical Data: (-)HLA/(-)HLL - continued

COOLING CAPACITY TONS CABINET SIZE	MODEL NO.	HEATER KW 208/240V	PH/HZ	NO. ELEMENTS - KW PER	TYPE SUPPLY CIRCUIT SINGLE CIRCUIT MULTIPLE CIRCUIT	CIRCUIT AMPS.	MOTOR AMPACITY	MINIMUM CIRCUIT AMPACITY	MAXIMUM CIRCUIT PROTECTION
	RXBH-24A07J	5.4/7.2	1/60	2-3.6	SINGLE	26.0/30.0	4.6	39/44	40/45
	RXBH-24A10J	7.2/9.6	1/60	2-4.8	SINGLE	34.6/40.0	4.6	49/56	50/60
	RXBH-24A15J	10.8/14.4	1/60	3-4.8	SINGLE	51.9/60.0	4.6	71/81	80/90
		3.6/4.8	1/60	1-4.8	MULTIPLE CKT1	17.3/20.0	4.6	28/31	30/35
	RXBH-24A15J	7.2/9.6	1/60	2-4.8	MULTIPLE CKT 2	34.6/40.0	0	44/50	45/50
	RXBH-24A18J	12.8/17	1/60	4-4.26	SINGLE	61.6/70.8	4.6	83/95	90/100
		6.4/8.5	1/60	2-4.26	MULTIPLE CKT 1	30.8/35.4	4.6	45/50	45/50
	RXBH-24A18J	6.4/8.5	1/60	2-4.26	MULTIPLE CKT 2	30.8/35.4	0	39/45	40/45
	RXBH-24A20J	14.4/19.2	1/60	4-4.8	SINGLE	69.2/80	4.6	93/106	100/110
	RXBH-24A20J	7.2/9.6	1/60	2-4.8	MULTIPLE CKT 1	34.6/40.0	4.6	49/56	50/60
		7.2/9.6	1/60	2-4.8	MULTIPLE CKT 2	34.6/40.0	0	44/50	45/50
	RXBH-24A25J	18.0/24.0	1/60	6-4.0	SINGLE	86.4/99.9	4.6	114/131	125/150
		6.0/8.0	1/60	2-4.0	MULTIPLE CKT 1	28.8/33.3	4.6	42/48	45/50
(-)HLA/(-)HLL	RXBH-24A25J	6.0/8.0	1/60	2-4.0	MULTIPLE CKT 2	28.8/33.3	0	36/42	40/45
<u>4 & 5</u>		6.0/8.0	1/60	2-4.0	MULTIPLE CKT 3	28.8/33.3	0	36/42	40/45
24	RXBH-24A30J	21.6/28.8	1/60	6-4.8	SINGLE	103.8/120.	4.6	136/156	150/175
	RXBH-24A30J (5-ton only)	7.2/9.6	1/60	2-4.8	MULTIPLE CKT 1	34.6/40.0	4.6	49/56	50/60
		7.2/9.6	1/60	2-4.8	MULTIPLE CKT 2	34.6/40.0	0	44/50	45/50
		7.2/9.6	1/60	2-4.8	MULTIPLE CKT 3	34.6/40.0	0	44/50	45/50
	RXBH-24A07C	5.4/7.2	3/60	3-2.4	SINGLE	15.0/17.3	4.6	25/28	25/30
	RXBH-24A10C	7.2/9.6	3/60	3-3.2	SINGLE	20.0/23.1	4.6	31/35	35/35
	RXBH-24A15C	10.8/14.4	3/60	3-4.8	SINGLE	30.0/34.6	4.6	44/49	45/50
	RXBH-24A18C	12.8/17.0	3/60	3-2.84	SINGLE	35.6/41.0	4.6	51/57	60/60
	RXBH-24A20C	14.4/19.2	3/60	3-3.2	SINGLE	40.0/46.2	4.6	56/64	60/70
	RXBH-24A20C	7.2/9.6	3/60	3-3.2	MULTIPLE CKT 1	20.0/23.1	4.6	31/35	35/35
		7.2/9.6	3/60	3-3.2	MULTIPLE CKT 2	20.0/23.1	0	25/29	25/30
	RXBH-24A25C	18.0/24.0	3/60	6-4.0	SINGLE	50.0/57.8	4.6	69/78	70/80
	RXBH-24A25C	9.0/12.0	3/60	3-4.0	MULTIPLE CKT 1	25.0/28.9	4.6	37/42	40/45
	RADE-24A230	9.0/12.0	3/60	3-4.0	MULTIPLE CKT 2	25.0/28.9	0	32/37	35/40
	RXBH-24A30C	21.6/28.8	3/60	6-4.8	SINGLE	60.0/69.4	4.6	81/93	90/100
	RXBH-24A30C	10.8/14.4	3/60	3-4.8	MULTIPLE CKT 1	30.0/34.7	4.6	44/50	45/50
	(5-ton only)	10.8/14.4	3/60	3-4.8	MULTIPLE CKT 2	30.0/34.7	0	38/44	40/45

NOTES:

Electric heater BTUH - (heater watts + motor watts) x 3.414 (see airflow table for motor watts.) Supply circuit protective devices may be fuses or "HACR" type circuit breakers. If non-standard fuse size is specified, use next size larger standard fuse size.

٠

Largest motor load is included in single circuit or circuit 1 of multiple circuits. Heater loads are balanced on 3 phase models with 3 or 6 heaters only. No electrical heating elements are permitted to be used with A Voltage (115V) air handler.

J Voltage (230V) signal phase air handler is designed to be used with single or three phase 230 volt electric heaters. In the case of connecting 3

phase power to air handler terminal block without the heater, bring only two leads to terminal block, cap, insulate and fully secure the third lead. Do not use 480 volts electrical heaters on 230 volts air handler.

Do not use 230 volts electrical heaters on 480 volts air handler.

If the kit is listed under both single and multiple circuits, the kit is shipped from factory as multiple circuits. For single phase application, Jumper bar kit RXBJ-A21 and RXBJ-A31 can be used to convert multiple circuits to a single supply circuit. Refer to Accessory Section for details.

	MFD: MO,/YEAR	01/2006		AIR CO		DIVISION			DE IN THE U.S.A.	I
	FRQ: MO/JANNE MODEL/MODELE # (-)H	LA-HM4821JA			SER	AL/EN SERIE # M	0106 3875		T DANS L'USA	Contractor
	VOLTS 20	8/240	PH/HZ	1/60			OR HP./F.L.A. EUR PSC/F.L.A	1/2 4.	1	should "mark
	ATTENTION: MARK	HEATER INSTALLED/ REIL DE CHAUFFAGE DI	E MARQUE A I	NSTALLE	\rightarrow	HEATER AMPS/AMPLIS	MOTOR AMPS/	HAXIMUM OVERCLAREN	MINIMUM BRANCH CIRCUIT	+or check" the
	HEATER MODELMODELE D'APPAREIL DE CHAUREAGE	CIRCUIT/TAPER LE CIRCUIT DE PROVISION	VOLTAGE/ TENSION	PHASE	KW	D'APPAREIL DE CHAUFFAGE	LES AMPLIS MOTEURS	PROTECTION/LA PROTECTION MAXIMUM DE OVERCURRENT	AMPACITY/AMPACITY MINIMUM DE CIRCUIT DE BRANCHE	left column for
If a heater	NO HEAT RXBH-24A05J	SINGLE	208/240	1/60	0.0 3.6/4.8	17.3/20.0	4.1 6.0	15 30/35	5.2 30/33	the kit installed
kit is listed	RXBH-24A07J RXBH-24A10J	SINGLE	208/240 208/240 208/240	1/60 1/60	5.4/7.2 7.2/9.6 10.8/14.4	26.0/30.0 34.6/40.0 51.9/60.0	6.0	40/45 60/60	40/45 51/58	
both	RXBH-24415J RXBH-24415J	SINGLE MULTI OKT 1	208/240 208/240 208/240	1/60	3.6/4.8	17.3/20.0 34.6/40.0	6.0 6.0 0.0	80/90 30/35	73/83 30/33	These are the
Single	RXBH-24A18J	MULTI OKT 2 SINGLE	208/240	1/60	12.8/17.0	61.2/70.8 30.8/35.4	6.0	45/50 90/100	44/50 84/96	These are the
and Multi-	RXBH-24A18J	MULTI OKT 1 MULTI OKT 2 SINGLE	208/240	1/60	6.4/8.5 14.4/19.2	30.8/35.4 69.2/80.0	0.0	50/60 40/45	46/52 39/45	required maxi-
circuit, the	RXBH-24A20J RXBH-24A20J	MULTI OKT 1 MULTI OKT 2	208/240	1/60	7.2/9.6	34.6/40.0	6.0	100/110 60/60	94/108 51/58	mum and mini-
kit is	RXBH-24A07C	SINGLE	208/240	3/60	5.4/7.2	15.0/17.3	6.0	45/50 30/30	44/50 27/30	mum circuit
shipped	RXBH-24A10C RXBH-24A15C	SINGLE	208/240	3/60	10.8/14.4	30.0/34.6 35.6/41.0	6.0	35/40 45/60	33/37 45/51	breaker sizes
as a Multi-	RXBH-24A18C RXBH-24A18C	MULTI OKT 1	208/240	3/60	6.4/8.5 6.4/8.5	17.8/20.5	6.0 6.0	60/60 30/35	52/59 30/34	↓ for overcurrent
circuit and	RXBH-24A20C	NULTI OKT 2 SINGLE	208/240	3/60	14.2/19.2	17.8/20.5	0.0	25/30 60/70	23/26 58/66	protection and
will	RXBH-24A20C	MULTI OKT 1 MULTI OKT 2	208/240 208/240	3/60 3/60	7.2/9.6 7.2/9.6	20.0/23.1 20.0/23.1	6.0 0.0	35/40	33/37 25/29	should not be
1 1										confused with
require a		Only list	ted kit	s ca	n he ar	oplied				the size of the
single										breakers
point kit			24.00		1.50%	San 974				installed in the
	S = SINGLE CIRCUIT/CIRCUI INDOOR BLOWER MOTOR LO					BE RATED AT 75°C M	UNIMUM COPI	PER CONDUCTORS (INLY TEST	heater kit.
	EXTERNAL STATIC RANGE .1 UNITS WITH ELECTRIC HEATE	TO .5 IN. W.C. (HEAT PL	JMP & ELECTR	IC HEAT).						
	HAVE INTEGRAL CIRCUIT BR	EAKERS WHICH PROVID	E SUPPLEMEN	TARY OV	ERCURRENT PRO	TECTION AND SERV	FAS & MAINTI	ENANCE "DISCONNE	CT" SUPPLY	
	CIRCUIT NOT TO EXCEED 120 BREAKER(S). IF BLOWER-CO	NIKUL ASSEMBLY REU	UIRES REMOV	AL, SEE "I	WARNING HAZAR	RDOUS VOLTAGE".				
	CHARGEMENT DU MOTEUR S DE CONDUCTEURS DE CUIVR	E SEULEMENT. TESTER	L'INTERVALLE	STATIO	JE EXTERNE : 1 A	5 PO W.C (THERMO	POMPE ET CH	ALIEFAGE ELECTRICI	IIF)	
	UNITÉS AVEC CHAUFFAGES É Conduit Pour les 36 pren Surintensité de courdant	ELECTRIQUES - LE DEGA	GEMENT ALLX	MATIFRE	S COMBUSTIRUES	DOIT FTRE DE 0 no	ALL ROITIER D	E I INITÉ ET DE A	ALL DI ÉNILLI ET	
	SUKINIENSIIE DE LUUKANI	EI SEKVENT DE « SECT	IONNELIR > D'	FNTPFTI	N IF OPOULT D	AT IMENTATION NE D	DOIT DAC DED	ACCED 100 VOLTC II	COLLEVIC CUID	
	DES UNITÉS MONOPHASÉES Disjoncteur(s). Si l'Assem	ABLAGE DE CONTRÔLE	DU VENTILATE	UR A BES	CIEUR DU COTE S	SECTEUR APRES AVO Assemblé, consul'	TER "AVERTISS	LA CONNEXION DES SEMENT DE TENSION	CABLAGES AU(X) I DANGEREUSE	

Heater Kit Supplemental Information: What allows the manufacturer to use standard Circuit Breakers up to 60 amps inside the air handler, when using an approved Heater Kit?

National Electric Code (Section 424-22b) and our UL requirements allow us to subdivide heating element circuits, of less than 48 amps, using breakers of not more than 60 amps and, additionally by, NEC 424-3b, a rating not less than 125 percent of the load and NEC 424-22c, which describes the supplementary overcurrent protection required to be factory-installed within, or on the heater. The breakers in the heater kit are not, and have never been, by NEC, intended to protect pwer wiring leading to the air handler unit. The breakers in the heating kit are for short circuit proteciton. All internal unit wiring, where the breakers apply, has been UL approved for short circuit protection.

Ampacity, (not breaker size), determines supply circuit wire size. The ampacity listed on the unit rating plate and the Maximum and Minimum circuit breaker size (noted above) or in the units specification sheet or installation instructions provides the information to properly select wire and circuit breaker/protector size. The National Electric Code (NEC) specifies that the supply or branch circuit must be protected at the source.

5.0 AIRFLOW PERFORMANCE

Airflow performance data is based on cooling performance with a coil and no filter in place. Select performance table for appropriate unit size, voltage and number of electric heaters to be used. Make sure external static applied to unit allows operation within the minimum and maximum limits shown in table below for both cooling and electric heat operation. For optimum blower performance, operate the unit in the .3 to .7 in W.C. external static range. Units with coils should be applied with a minimum of .1 in W.C. external static.

5.1 AIRFLOW OPERATING LIMITS

Cabinet Size	1	7	1	7	2	1	2	4
Cooling BTUH x 1,000 Cooling Tons Nominal	-018 1.5	-024 2	-030 2.5	-036 3	-042 3.5	-048 4	-048 4	-060 5
Heat Pump or Air Conditioning Maximum Heat/Cool CFM [L/s] (37.5 CFM [18 L/s]/1,000 BTUH) (450 CFM [212 L/s]/Ton Nominal)	675 [319]	900 [425]	1125 [531]	1350 [637]	1575 [743]	1800 [850]	1800 [850]	1930 [911]
Heat Pump or Air Conditioning Nominal Heat/Cool CFM [L/s] (33.3 CFM [16 L/s]/1,000 BTUH) (400 CFM [189 L/s]/Ton Nominal)	600 [283]	800 [378]	1000 [472]	1200 [566]	1400 [661]	1600 [755]	1600 [755]	1800 [850]
Heat Pump or Air Conditioning Minimum Heat/Cool CFM [L/s] (30.0 CFM [14 L/s]/1,200 BTUH) (360 CFM [170 L/s]/Ton Nominal)	540 [255]	720 [340]	900 [425]	1080 [510]	1260 [595]	1440 [680]	1440 [680]	1620 [765]
Maximum kW Electric Heating & Minimum Electric Heat CFM [L/s]	10 500 [236]	10 650 [308]	15 865 [408]	15 1015 [480]	20 1200 [566]	20 1400 [660]	20 1400 [660]	25 1730 [821]
Maximum Electric Heat Rise °F [°C]	85 [29]	85 [29]	85 [29]	85 [29]	85 [29]	85 [29]	85 [29]	85 [29]

5.2 240V AIRFLOW PERFORMANCE DATA – (-)HSA/(-)HSL (PSC MOTOR)

Model Number	Motor Speed From	Manufacturer Recommended Air Flow Range	Blower Size/ Motor H.P.	Motor Speed			PSC CFM[L/s] Air Delivery/RPM/Watts-240 Volts External Static Pressure-Inches W.C.						
Number	Factory	(Min / Max) CFM	# of Speeds	Sheen		0.10 [.02]	0.20 [.05]	0.30 [.07]	0.40 [.10]	0.50 [.12]	0.60 [.15]	0.70 [.17	
					CFM	668 [315]	637 [301]	595 [281]	560 [264]	517 [244]	_	_	
				Low	RPM	541	596	657	706	761	_	_	
1817	High	517/711CFM	10x6		Watts	180	171	166	161	169	_	_	
No heater	240 V	[244/336 L/s]	1/5 [149] 2 Speed		CFM	_	_	_	_	711 [336]	662 [312]	614 [290	
			2 00000	High	RPM			_	_	812	853	890	
				g.i	Watts	_	_	_	_	243	227	210	
					CFM	638 [301]	607 [286]	565 [267]	530 [250]	487 [230]	_	_	
				Low	RPM	571	626	687	736	791	_	_	
1817	High	487/661 CFM	10x6	2011	Watts	171	162	157	152	146	_	_	
with 13kw	240 V	[230/312 L/s]	1/5 [149] 2 Speed		CFM	_	_	_	_	661 [312]	612 [289]	564 [266	
heater		[2 Speed	High	RPM	_	_	_	_	837	878	915	
					Watts	_	_	_	_	232	216	199	
					CFM	817 [386]	779 [368]	757 [357]	693 [327]	647 [305]	_	_	
				Low	RPM	616	667	715	770	808	_	_	
2417	High	647/888	10x6	2011	Watts	239	230	221	206	205	_	_	
No heater	240 V	[305.419 L/s]	1/5 [149] 2 Speed		CFM	_	_	_	_	888 [419]	828 [391]	774 [365	
		[]	2 Opeeu	High	RPM	_	_	_	_	875	908	958	
					Watts	_	_	_	_	331	313	301	
					CFM	787 [371]	749 [353]	727 [343]	663 [313]	617 [291]	_	_	
				Low	RPM	646	697	745	800	838	_	_	
2417	High	617/838	10x6	2011	Watts	230	221	212	197	187	_	_	
with	240 V	[291/395 L/s]	1/5 [149] 2 Speed		CFM	_		_	_	838 [395]	778 [367]	724 [342	
13kw heater		[]	2 Speed	High	RPM	_	_	_	_	900	933	983	
					Watts			_	_	320	302	290	
					CFM	1022 [482]	987 [466]	940 [444]	903 [426]	864 [408]	_	_	
				Low	RPM	700	754	794	633	870	_	_	
3017	High	864/1004	10x8	2011	Watts	344	313	302	309	288	_	_	
No heater	240 V	[408/474 L/s]	1/4 [186] 2 Speed		CFM	_	_	_	_	1004 [474]	951 [449]	883 [417	
	[]	2 Speed	High	RPM			_	_	924	953	975		
				g.i	Watts	_		_	_	364	352	344	
						CFM	972 [459]	937 [442]	890 [420]	853 [403]	814 [384]	_	_
				Low	RPM	750	804	844	883	920	_	_	
3017	High	814/904 CFM	10x8	LOW	Watts	324	293	282	274	268	_	_	
with	240 V	[384/427 L/s]	1/4 [186] 2 Speed		CFM	_	_	_	_	904 [427]	851 [402]	783 [370	
18kw heater			2 00000	High	RPM	_	_	_	_	949	978	1000	
					Watts	_	_	_	_	334	322	314	
					CFM	1229 [580]	1201[567]	1170 [552]	1141 [538]	1104 [521]	_	_	
				Low	RPM	788	833	872	909	951	_	_	
3617/3621	High	1104/1248 CFM	10x8	2011	Watts	466	462	427	406	395	_	_	
No heater	240 V	[521/589 L/s]	1/3 [249]		CFM						1194 [563]	1133 [53	
		[2 Speed	High	RPM	_	_	_	_	1008	1028	1042	
					Watts	_	_	_	_	488	475	454	
					CFM	1179 [556]	1151 [543]	1120 [529]	1091 [515]	1054 [497]	_	_	
				Low	RPM	838	883	922	959	1001	_	_	
3617/3621	High	1054/1148 CFM	10x8	2011	Watts	446	442	407	386	375	_	_	
with	240 V	[497/542 L/s]	1/3 [249] 2 Speed		CFM	_	_	_	_	1148 [542]	1094 [516]	1033 [48]	
18kw heater		[101/012 2/0]	2 Speed	High	RPM	_	_	_	_	1033	1053	1067	
				ingi	Watts	_	_	_	_	458	445	424	
	1				CFM	1526 [720]	1474 [696]	1427 [673]	1307 [617]	1241 [586]		- 424	
				Low	RPM		870	902	948	968			
4221	Linh	1241/1537 CFM	10x10	LUW		834				462			
4221 No heater	High 240 V	[586/725 L/s]	1/2 [373]		Watts CFM	560	549	535	476	1		1224 [60	
NU HEALEI	240 V	[JU0//2J L/S]	2 Speed	Lliah			-			1537 [725]	1418 [669]	1334 [63	
			.	High	RPM Watto	-				1072	1077	1085	
					Watts	1456 [007]	1404 [000]	1057 [040]	1007 [504]	860	835	820	
					CFM	1456 [687]	1404 [663]	1357 [640]	1237 [584]	1171 [553]	_		
	1		10.10	Low	RPM	886	906	925	959	992			
4221		100511507	10x10	LOW					160	1 101			
4221 with	High	1225/1500 CFM	1/2 [373]		Watts	542	524	505	468	431	-		
	High 240 V	1225/1500 CFM [553/678 L/s]	1/2 [373] 2 Speed	High	Watts CFM RPM	542			400	431 1437 [678] 1080		1234 [58 1105	

5.2 240V AIRFLOW PERFORMANCE DATA - (-)HSA/(-)HSL (PSC MOTOR) - continued

Model Number	Number From Air Flow Range # of Speeds						PSC CFM[L/s] Air Delivery/RPM/Watts-240 Volts External Static Pressure-Inches W.C.									
	Factory	(Min / Max) CFM	# of Speeds	Speed		0.10 [.02]	0.20 [.05]	0.30 [.07]	0.40 [.10]	0.50 [.12]	0.60 [.15]	0.70 [.17]				
					CFM	1741 [822]	1719 [811]	1667 [787]	1628 [768]	1572 [742]	_	_				
				Low	RPM	878	920	950	981	1007	-	_				
4821/4824	High	1572/1824 CFM	10x10 3/4 [559]		Watts	785	757	707	667	641	-	—				
No heater	240 V	[742/861 L/s]	2 Speed		CFM	_	—	—	—	1824 [861]	1767 [834]	1653 [780]				
			-	High	RPM	—	—	—	—	1102	1112	1121				
					Watts	—	—	-	—	871	830	770				
					CFM	1671 [789]	1649 [778]	1597 [754]	1558 [735]	1502 [709]	—	—				
4821/4824			10x10 3/4 [559] 2 Speed	CFM 1671 [789] 1649 [778] Low RPM 945 965 Watts 715 685 CFM - - High RPM - - Watts - - - Low RPM - - Low RPM 764 803 Watts 779 763 -	RPM		965	995	1025	1050	—	—				
	4821/4824 High with 240 V 25kw heater	1225/1500 [709/814 L/s]			Watts	715	685	650	630	610	—	—				
					CFM	_	_	—	_	1724 [814]	1667 [787]	1553 [733]				
ZOKW Healer						—		1116	1119	1130						
					Watts	_		—		810	780	730				
					CFM			1860 [878]	1813 [856]	1766 [833]	—	—				
				Low	RPM			838	865	889	_	_				
6024	High	1766/1965 CFM	11x11 3/4 [559]		Watts	779	763	747	729	708	—	—				
No heater	240 V	[833/927 L/s]	2 Speed		CFM	_	—	—	—	1965 [927]	1908 [900]	1854 [875]				
				High	RPM	_	_	_	_	943	967	977				
					Watts	_		—		828	799	795				
					CFM	1844 [870]	1812 [855]	1760 [831]	1713 [808]	1666 [786]	—	—				
6024				Low	RPM	839	865	890	913	935	—	—				
with	High	1225/1500	11x11 3/4 [559]		Watts	745	729	713	696	678	_					
30kw heater	240 V	1220/1000	2 Speed		CFM	_	—	—	_	1865 [880]	1808 [853]	1754 [828]				
			2 Opeeu		RPM	_	_	-	—	987	1001	1014				
					Watts	-	—	-	—	788	766	744				

NOTE:

• All 208/240V PSC motors have voltage taps for 208 and 240 volts.

- All 208/240V PSC motors are shipped on high speed and 240 volts.
- If the application external static is less than 0.5" WC, adjust the motor speed to the low static speed as described below.
 - Unplug the black motor wire off the relay on the control board and plug in the red motor wire.

- Replace the cap on the black motor wire.

- Voltage change (208/240V motors):
 - Move the orange lead to transformer 208V tap from 240V tap. Replace the wire cap on 240V tap.

- Unplug the purple motor wire off the transformer and plug in the yellow motor wire.

- Replace the cap on the purple motor wire.
- The above airflow table lists the airflow information for air handlers without heater and air handler with maximum heater allowed for each model.
- The following formula can be used to calculate the approximate airflow, if a smaller (N kw) than the maximum heater kit is installed.
 Approximate Airflow = Airflow without heater (Airflow without heater Airflow with maximum heater) X (N kw/maximum heater kw)

5.3 115/208/480V AIRFLOW PERFORMANCE DATA – (-)HSA/(-)HSL (PSC MOTOR)

Model	Motor Speed	Manufacturer Recommended	Blower Size/ Motor H.P.	Motor				r Delivery/R	PSC PM/Watts-11 ressure-Inch		loits							
Number	From Factory	Air Flow Range (Min / Max) CFM	# of Speeds	Speed		0.10 [.02]	0.20 [.05]	0.30 [.07]	0.40 [.10]	0.50 [.12]	0.60 [.15]	0.70 [.17						
					0.514													
				Low	CFM RPM	681 [321] 541	636 [300] 601	606 [286] 670	567 [268] 714	523 [247] 768		_						
1817		523/705CFM	10x6	LOW	Watts	193	181	173	164	157								
No heater	High	[247/333 L/s]	1/5 [149] 2 Speed		CFM			-	—	705 [333]	650 [307]	599 [283]						
		[,]	2 Speed	High	RPM	_	_	_	_	815	861	989						
					Watts	_	_	_	_	239	227	204						
					CFM	651 [307]	606 [286]	576 [272]	537 [253]	493 [233]	_	_						
				Low	RPM	571	631	700	744	798	_	_						
1817		487/661 CFM	10x6		Watts	184	172	164	155	148	_	—						
with 13kw	High	[230/312 L/s]	1/5 [149] 2 Speed		CFM	_	—	_	—	655 [309]	600 [283]	549 [259]						
heater				High	RPM	—	—	—	—	840	886	1014						
					Watts	_	—	_	—	228	216	193						
					CFM	875 [413]	806 [380]	787 [371]	739 [349]	682 [322]	-	—						
			10.0	Low	RPM	648	700	745	794	827	-							
2417	High	647/888	10x6 1/5 [149]		Watts	259	255	243	234	227	—							
No heater		[305.419 L/s]	2 Speed		CFM	-	_	-	—	897 [423]	851 [402]	765 [361]						
				High	RPM		_	_	_	906	925	955						
					Watts	-	-	-	-	332	318	306						
					CFM	845 [399]	776 [366]	757 [357]	709 [335]	652 [308]								
2417		047/000	10x6	Low	RPM	678	730	775	824	857	-							
with	High	617/838	1/5 [149]		Watts	250	246	234	225	218		715 [007]						
13kw heater		[291/395 L/s]	2 Speed	Llink	CFM			_	—	847 [400] 931	801 [378] 950	715 [337] 980						
				High	RPM			_		321	307	295						
					Watts	1038 [490]	1010 [477]	976 [461]	925 [437]	883 [417]	307	295						
				Low	CFM RPM	721	771	799	48	880	_							
3017		864/1004	10x8	Low	Watts	325	314	303	290	286	_	_						
No heater	High	[408/474 L/s]	1/4 [186]		CFM					1015 [479]	963 [454]	890 [420]						
No noutor		[400/474 L/3]	2 Speed	High	RPM		_	_		928	955	974						
			nigii	Watts	_	_	_	_	356	341	329							
					CFM	988 [466]	960 [453]	926 [437]	875 [413]	833 [393]	_							
				Low	RPM	771	821	849	898	930	_	_						
3017		814/904 CFM	10x8							2011	Watts	305	294	283	270	266	_	_
with	High	[384/427 L/s]	1/4 [186] 2 Speed		CFM	_	_	_	_	915 [432]	863 [407]	790 [373]						
18kw heater			2 00000	High	RPM	_	_	_	_	953	980	999						
					Watts	_	_	_	_	326	311	299						
					CFM	1201 [567]	1170[552]	1141 [538]	1104 [521]	1062 [501]	_	_						
				Low	RPM	833	872	909	951	965	_	_						
3617/3621		1104/1248 CFM	10x8		Watts	462	427	406	396	385	_	_						
No heater	High	[521/589 L/s]	1/3 [249] 2 Speed		CFM	_	_	_	_		1134 [535]	1078 [509						
			2 00000	High	RPM	_	_	_	_	1024	1042	1060						
					Watts	_	—	_	—	475	454	417						
					CFM	1151 [543]	1120 [529]	1091 [515]	1054 [497]	1012 [478]	—	_						
3617/3621				Low	RPM	883	922	959	1001	1015	—	—						
	Lliab	1054/1148 CFM	10x8		Watts	442	407	386	376	365	—	—						
with 18kw heater	High	[497/542 L/s]	1/3 [249] 2 Speed		CFM	—	—	—	—	1094 [516]	1034 [488]	978 [462]						
TOKW Heater				High	RPM	-	—	—	—	1049	1067	1085						
					Watts	_	_	_	_	445	424	387						
					CFM	1493 [705]	1449 [684]	1363 [643]	1287 [607]	1211 [571]	_	_						
				Low	RPM	822	858	885	931	958	_	_						
4221	Link	1241/1537 CFM	10x10		Watts	540	519	506	484	459	_	_						
No heater	High	[586/725 L/s]	1/2 [373] 2 Speed		CFM	_	_	_	_	1514 [714]	1411 [666]	1315 [621						
		_		High	RPM	_	_	_	_	1061	1069	1078						
					Watts	_	—	_	—	710	702	677						
					CFM	1423 [672]	1379 [651]	1293 [610]	1217 [574]	1141 [538]	-	—						
4001				Low	RPM	870	882	925	957	992	_	_						
4221	112-0-	1225/1500 CFM	10x10		Watts	514	508	490	461	431	-	_						
with	High	[553/678 L/s]	1/2 [373] 2 Speed		CFM	_	_	_	_	1414 [667]	1311 [619]	1215 [573						
20kw heater		· · ·		High	RPM	_	_	_	_	1067	1080	1094						
	1	1		1		1	_		_	700	678	665						

5.3 115/208/480V AIRFLOW PERFORMANCE DATA – (-)HSA/(-)HSL (PSC MOTOR) - continued

Model Number	Number From Air Flow Range # of Speeds St							r Delivery/Rl	PSC PM/Watts-11 ressure-Incl		olts	
	Factory	(Min / Max) CFM	# of Speeds			0.10 [.02]	0.20 [.05]	0.30 [.07]	0.40 [.10]	0.50 [.12]	0.60 [.15]	0.70 [.17]
					CFM	1711 [807]	1689 [797]	1637 [773]	1598 [754]	1542 [728]	_	_
				Low	RPM	863	905	935	966	992	-	_
4821/4824	High	1572/1824 CFM	10x10 3/4 [559]		Watts	765	737	687	647	621	—	—
No heater	riigii	[742/861 L/s]	2 Speed		CFM	—	—	—	—	1787 [843]	1679 [792]	1575 [743]
				High	RPM	—	—	—	_	1089	1098	1110
					Watts	—	—	—	—	695	665	630
			10x10 3/4 [559] 2 Speed		CFM	1641 [774]	1619 [764]	1567 [739]	1528 [721]	1472 [695]	—	—
4821/4824		1225/1500 [709/814 L/s]		Low	RPM	930	950	985	1015	1041	—	—
4821/4824 with Hig 25kw heater	High				Watts	700	660	630	600	580	—	—
	піўп				CFM		_	—	_	1687 [796]	1579 [745]	1475 [696]
ZJKW Heater					RPM		—	—	_	1095	1107	1120
					Watts	_	—	—	_	670	635	615
					CFM	1866 [881]	1833 [865]	1806 [852]	1772 [836]	1710 [807]	—	—
				Low	RPM	764	803	824	856	886	—	_
6024	High	1766/1965 CFM	11x11 3/4 [559]		Watts	778	756	733	715	701	—	_
No heater	riigii	[833/927 L/s]	2 Speed		CFM	_	—	—	_	1967 [928]	1916 [904]	1863 [879]
				High	RPM		—	—	_	948	959	991
					Watts		_	—	—	850	827	816
					CFM	1796 [848]	1763 [832]	1736 [819]	1702 [803]	1640 [774]	—	_
6024				Low	RPM	828	860	878	890	1001	—	—
with	High	1225/1500	11x11 3/4 [559]		Watts	735	718	705	695	678	—	—
30kw heater	l	1220/1000	2 Speed		CFM	_	_	—	_	1867 [881]	1816 [857]	1763 [832]
ookw noator			2 Speed		RPM		_	—	—	989	1005	1020
					Watts	—	—	—	—	818	795	780

NOTE:

- All 208/240V PSC motors have voltage taps for 208 and 240 volts.
- All 208/240V PSC motors are shipped on high speed and 240 volts.
- All 115V PSC motors are shipped on high speed.
- If the application external static is less than 0.5" WC, adjust the motor speed to the low static speed as described below:
 Unplug the black motor wire off the relay on the control board and plug in the red motor wire.
- Replace the cap on the black motor wire.
- Voltage change (208/240V motors):
- Move the orange lead to transformer to 208V tap from 240V tap. Replace the wire cap on 240V tap.
- Unplug the purple motor wire off the transformer and plug in the yellow motor wire.
- Replace the cap on the purple motor wire.
- All 480V PSC motors are shipped on high speed.
- If the application external static is less than 0.5" WC, adjust the motor speed to the low static speed as described below for 3-ton through 4-ton air handlers.
- Unplug the black motor wire off the relay and remove the cap from the red motor wire.
- Plug the red motor wire to the relay and connect the black motor wire with the yellow motor wire.
- For 5-ton air handler, unplug the black motor wire off the relay and plug in the red motor wire, then cap the black motor wire. There is no yellow motor wire on 5-ton air handler.

WARNING: Do not connect red motor wire with yellow motor wire in any circumstance on 480V PSC motors. Connecting red motor wire with yellow motor wire will result in permanent motor damage.

- The above airflow table lists the airflow information for air handlers without heater and air handler with maximum heater allowed for each model.
- The following formula can be used to calculate the approximate airflow, if a smaller (N kw) than the maximum heater kit is installed. Approximate Airflow = Airflow without heater - (Airflow without heater - Airflow with maximum heater) X (N kw/maximum heater kw)

5.4 115/208/240V AIRFLOW PERFORMANCE DATA – (-)HLA/(-)HLL (X-13 MOTOR)

Model	Tonnage	Motor Speed	Manufacturer Recommended	Blower Size/ Motor H.P.	Motor	X-13 CFM[L/s] Air Delivery/RPM/Watts-115/208/240 Volts External Static Pressure-Inches W.C.								
Number	Application	From Factory	Air Flow Range (Min / Max) CFM	# of Speeds	Speed			1						
		Tactory					0.10 [.02]	0.20 [.05]	0.30 [.07]		0.50 [.12]	0.60 [.15]	0.70 [.17]	
						CFM	689 [325]	644 [304]	602 [284]	563 [266]	509 [240]	_	_	
0.447			500/0040514	10x6	2	RPM	580	633	683	728	781	-		
2417 No heater	1.5	5	509/681CFM [240/321 L/s]	1/3 [249]		Watts	66	84	86	88	91	-		
NO Healer			[240/321 L/S]	5 Speed	3	CFM		_			681 [321] 835	644 [304] 879	603 [285] 916	
					3	RPM Watts		_			136	143	152	
						CFM	670 [316]	625 [295]	583 [275]	544 [257]	490 [231]	—	-	
					2	RPM	608	661	711	756	809	_	_	
2417	1.5	_	490/666 CFM	10x6		Watts	75	93	95	97	100	-	-	
with 13kw heater	1.5	5	[231/314 L/s]	1/3 [249] 5 Speed		CFM	—	—	—	—	666 [314]	629 [297]	588[277]	
ISKW Healer					3	RPM	-	-	—	—	855	899	936	
						Watts	-	-	—	_	144	151	160	
						CFM	875 [413]	839 [396]	804 [379]	762 [360]	730 [345]			
				10x6	4	RPM	679	724	765	810	852	-		
2417	2.0	5	730/651 CFM	1/3 [249]		Watts	121	131	135	142	143			
No heater			[345/307 L/s]	5 Speed	5	CFM		_			862 [407] 904	828 [391] 940	801 [378] 970	
					5	RPM Watts		_			203	215	220	
						CFM	856 [404]	820 [387]	785 [370]	743 [351]	711 [336]			
					4	RPM	707	752	793	838	880	_	_	
2417		_	711/626 CFM	10x6		Watts	130	140	144	151	152	_	_	
with	2.0	5	[336/295 L/s]	1/3 [249] 5 Speed		CFM	-	-	_	-	837 [395]	803 [379]	776 [366]	
13kw heater				e opeca	5	RPM	-	-	—	—	924	960	990	
						Watts	—	—	—	—	211	223	228	
						CFM	1093 [516]	1050 [496]	1017 [480]	977 [461]	935 [441]	-	—	
				10.0	2	RPM	671	725	764	809	852	-	-	
3617	2.5 5	935/1084 CFM	10x8 1/2 [373]		Watts	153	168	174	180	188	—	—		
No heater			[441/512 L/s]	5 Speed	3	CFM		-	—		1084 [512]	1040 [491]	1001 [472]	
				3	RPM					896 249	936 257	971 261		
						Watts CFM	1068 [504]	1025 [484]	992 [468]	952 [449]	910 [429]	201	201	
					2	RPM	711	765	804	849	892	_	_	
3617			910/1059 CFM	10x8	2	Watts	164	179	185	191	199	_	_	
with	2.5	5	[429/500 L/s]	1/2 [373] 5 Speed		CFM	_	_	_	_	1059 [500]	1015 [479]	976 [461]	
18kw heater				0 00000	3	RPM	-	-	_	_	936	976	1011	
						Watts	—	—	—	—	260	268	272	
						CFM	1270 [599]	1237 [584]	1199 [566]	1165 [550]	1130 [533]	_	_	
					4	RPM	775	816	846	882	926	—	—	
3617	3.0	5	1130/1275 CFM	10x8 1/2 [373]		Watts	237	249	259	268	277	_		
No heater	0.0	Ū	[533/602 L/s]	5 Speed		CFM		-	_	_		1244 [587]	1211 [571]	
					5	RPM Watts	-	-	—		963	999	1029	
						CFM	10/5 (500)	1010 [570]	1174 [554]	1140 (520)	338	348	363	
					4	RPM	1245 [588] 815	1212 [572] 856	1174 [554] 886	1140 [538] 922	1105 [521] 966	_		
3617			1105/1250 CFM	10x8	4	Watts	248	260	270	279	288	_	_	
with	3.0	5	[521/590 L/s]	1/2 [373]		CFM					1250 [590]	1219 [575]	1186 [560]	
18kw heater			[02,000,000]	5 Speed	5	RPM	-	_	_	_	1003	1039	1069	
					Ŭ	Watts	_	_	_	_	349	359	374	
						CFM	1473 [695]	1442 [681]	1401 [661]	1373 [648]	1337 [631]	_	_	
					2	RPM	781	825	867	905	949	_	_	
4821		-	1337/1447 CFM	10x10		Watts	257	271	303	307	315	_	_	
No heater	3.5	5	[631/683 L/s]	3/4 [559] 5 Speed		CFM	_	_	_	_	1447 [683]	1433 [676]	1402 [662]	
					3	RPM	_	_	—	—	987	1034	1065	
						Watts				_	394	406	405	
						CFM	1433 [676]	1402 [662]	1361 [642]	1333 [629]	1297 [612]	-	-	
4221				10.10	3	RPM	831	875	919	954	989	-	-	
with	3.5	5	1297/1333 CFM	10x10 3/4 [559]		Watts	277	295	313	319	325	-		
20kw heater	0.0	U U	[612/629 L/s]	5 Speed		CFM					1333 [629]	1300 [613]	1267 [598]	
					3	RPM				_	1011	1046	1080	
						Watts	_	_	—	_	350	364	377	

5.4 115/208/240V AIRFLOW PERFORMANCE DATA - (-)HLA/(-)HLL (X-13 MOTOR) - continued

Model Number	Tonnage Application	Motor Speed From	Manufacturer Recommended Air Flow Range	Blower Size/ Motor H.P.	Motor Speed			CFM[L/s] Air Exte	r Delivery/R	X-13 PM/Watts-11 ressure-Inch		olts	
Number	Apprication	Factory	(Min / Max) CFM	# of Speeds	Sheen		0.10 [.02]	0.20 [.05]	0.30 [.07]	0.40 [.10]	0.50 [.12]	0.60 [.15]	0.70 [.17]
						CFM	1665 [786]	1631 [770]	1601 [756]	1572 [742]	1535 [724]	_	_
					4	RPM	853	893	934	968	1015	_	_
4821	4.0	-	1535/1654 CFM	10x10		Watts	351	387	401	406	422	_	_
No heater	4.0	5	[724/781 L/s]	3/4 [559] 5 Speed		CFM	_	_	_	_	1654 [781]	1624 [766]	1563 [738]
					5	RPM	-	-	_	_	1036	1078	1095
						Watts	—	—	—	—	500	513	523
						CFM	1625 [767]	1591 [751]	1561 [737]	1532 [723]	1495 [706]	—	—
4821					4	RPM	894	932	970	1020	1052	—	—
	4.0	5	1495/1614 CFM	10x10		Watts	389	400	410	430	450	—	—
with 25kw heater	4.0	Э	[706/762 L/s]	3/4[559] 5 Speed		CFM	—	—	—	—	1614 [762]	1584 [748]	1523 [719]
25KW Heater					5	RPM	—	—	—	—	1085	1090	1105
						Watts	—	—	—	—	514	520	530
						CFM	1748 [825]	1669 [788]	1639 [773]	1599 [755]	1545 [729]	—	—
					2	RPM	660	698	734	762	795	-	—
4824	4.0 3 1545/1732 CFM	11x11 3/4 [559]		Watts	297	311	326	340	353	—	—		
No heater	4.0	5	[729/817 L/s]	5 Speed		CFM	-	—	_	_	1732 [817]	1683 [794]	1630 [769]
					3	RPM	-	—	_	_	840	872	899
						Watts	_	_	_		448	467	480
						CFM	1708 [806]	1629 [769]	1599 [755]	1559 [736]	1505 [710]	—	_
4824					2	RPM	680	736	760	790	820	—	_
with	4.0	3	1505/1692 CFM	11x11 3/4 [559]		Watts	305	330	341	350	361	-	—
25kw heater	4.0	0	[710/798 L/s]	5 Speed		CFM	-	-	_	_	1692 [798]	1643 [775]	1590 [750]
20kw Houton					3	RPM	_	-	_	_	865	890	1014
						Watts	-	-	—	—	460	470	481
						CFM	1902 [898]	1862 [879]	1809 [854]	1781 [840]	1739 [821]	_	_
					4	RPM	712	749	787	815	856	-	—
6024	5.0	5	1739/1905 CFM	11x11 3/4 [559]		Watts	389	409	419	432	459	-	_
No heater			[821/899 L/s]	5 Speed		CFM	-	-	_	—	1905 [899]	1866 [881]	1832 [865]
					5	RPM	-	_	_	—	894	924	950
						Watts	—	—	—	—	565	570	592
						CFM	1862 [879]	1822 [860]	1769 [835]	1741 [822]	1699 [802]	—	_
6024				44.44	4	RPM	750	790	810	850	880	—	_
with	5.0	5	1699/1865 CFM	11x11 3/4 [559]		Watts	410	420	430	455	479	—	—
33kw heater		5	[802/880 L/s]	5 Speed		CFM	_	_	—	—	1865 [880]	1826 [862]	1792 [846]
					5	RPM					920	945	970
						Watts	—	-	—	—	565	587	610

NOTE:

X-13 motor speed changes

All X-13 motors have 5 speed tabs. Speed tab 1 is for continuous fan. Speed tab 2 (low static) and Speed tab 3 (high static) are for lower tonnage. Speed tab 4 (low static) and Speed tab 5 (high static) are for higher tonnage.

X-13 air handlers are always shipped from factory at speed tab 5, except for -4824, which is set at speed tab 3. For instance, RHLA-HM2417JA is always shipped at high static 2-ton airflow (Speed tab 5). To change to 1.5-ton airflow, move the blue wire to Speed tab 2 or 3 on the X-13 motor.

The low static Speed tab 2 (lower tonnage) and 4 (higher tonnage) are used for external static below 0.5" WC. The high static Speed tab 3 (lower tonnage) and 5 (higher tonnage) are used for external static exceeding 0.5" WC. Move the blue wire to the appropriate speed tab as required by the application needs.

• The airflow for continuous fan (Speed tab 1) is always set at 50% of the Speed tab 4.

• The above airflow table lists the airflow information for air handlers without heater and air handler with maximum heater allowed for each model.

• The following formula can be used to calculate the approximate airflow, if a smaller (N kw) than the maximum heater kit is installed.

Approximate Airflow = Airflow without heater - (Airflow without heater - Airflow with maximum heater) X (N kw/maximum heater kw)

6.0 DUCTWORK

Field ductwork must comply with the National Fire Protection Association NFPA 90A, NFPA 90B and any applicable local ordinance.

🛦 WARNING

Do not, under any circumstances, connect return ductwork to any other heat producing device such as fireplace insert, stove, etc. Unauthorized use of such devices may result in fire, carbon monoxide poisoning, explosion, personal injury or property damage.

Sheet metal ductwork run in unconditioned spaces must be insulated and covered with a vapor barrier. Fibrous ductwork may be used if constructed and installed in accordance with SMACNA Construction Standard on Fibrous Glass Ducts. Ductwork must comply with National Fire Protection Association as tested by U/L Standard 181 for Class I Air Ducts. Check local codes for requirements on ductwork and insulation.

- Duct system must be designed within the range of external static pressure the unit is designed to operate against. It is important that the system airflow be adequate. Make sure supply and return ductwork, grills, special filters, accessories, etc. are accounted for in total resistance. See airflow performance tables in this manual.
- Design the duct system in accordance with "ACCA" Manual "D" Design for Residential Winter and Summer Air Conditioning and Equipment Selection. Latest editions are available from: "ACCA" Air Conditioning Contractors of America, 1513 16th Street, N.W., Washington, D.C. 20036. If duct system incorporates **flexible air duct**, be sure **pressure drop** information (straight length plus all turns) shown in "ACCA" Manual "D" is accounted for in system.
- Supply plenum is attached to the 3/4" duct flanges supplied with the unit. Attach flanges around the blower outlet.

IMPORTANT: If an elbow is included in the plenum close to the unit, it must not be smaller than the dimensions of the supply duct flange on the unit.

- **IMPORTANT:** The front flange on the return duct if connected to the blower casing must not be screwed into the area where the power wiring is located. Drills or sharp screw points can damage insulation on wires located inside unit.
- Secure the supply and return ductwork to the unit flanges, using proper fasteners for the type of duct used and tape the duct-to-unit joint as required to prevent air leaks.

7.0 REFRIGERANT CONNECTIONS

Keep the coil connections sealed until refrigerant connections are to be made. See the Installation Instructions for the outdoor unit for details on line sizing, tubing installation, and charging information.

Coil is shipped with a low (5 - 10 PSIG) pressure charge of dry nitrogen. Evacuate the system before charging with refrigerant.

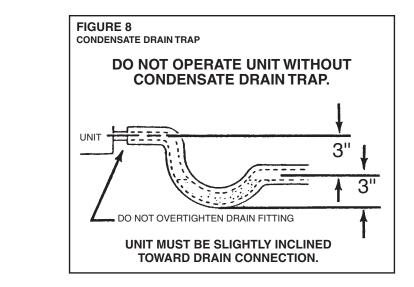
Install refrigerant tubing so that it does not block service access to the front of the unit.

Nitrogen should flow through the refrigerant lines while brazing.

Use a brazing shield to protect the cabinet's paint from being damaged by torch flames.

After the refrigerant connections are made, seal the gap around the connections with pressure sensitive gasket. If necessary, cut the gasket into two pieces for a better seal (See Figure 4.)

7.1 TEV SENSING BULB


IMPORTANT: DO NOT perform any soldering with the TEV bulb attached to any line. After soldering operations have been completed, clamp the TEV bulb securely on the suction line at the 10 to 2 o'clock position with the strap provided in the parts bag. Insulate the TEV sensing bulb and suction line with the provided pressure sensitive insulation (size 4" x 7") and secure with provided wire ties.

IMPORTANT: TEV sensing bulb should be located on a horizontal section of suction line, just outside of coil box.

7.2 CONDENSATE DRAIN TUBING

Consult local codes or ordinances for specific requirements.

IMPORTANT: When making drain fitting connections to the drain pan, use a thin layer of Teflon paste, silicone or Teflon tape and install hand tight.

IMPORTANT: When making drain fitting connections to drain pan, do not overtighten. Overtightening fittings can split pipe connetions on the drain pan.

- Install drain lines so they do not block service access to front of the unit. Minimum clearance of 24 inches is required for filter, coil or blower removal and service access.
- Make sure unit is level or pitched slightly toward primary drain connection so that water will drain completely from the pan. (See Figure 8.)
- Do not reduce drain line size less than connection size provided on condensate drain pan.
- All drain lines must be pitched downward away from the unit a minimum of 1/8" per foot of line to ensure proper drainage.
- Do not connect condensate drain line to a closed or open sewer pipe. Run condensate to an open drain or outdoors.
- The drain line should be insulated where necessary to prevent sweating and damage due to condensate forming on the outside surface of the line.
- Make provisions for disconnecting and cleaning of the primary drain line should it become necessary. Install a 3 in. trap in the primary drain line as close to the unit as possible. Make sure that the top of the trap is below connection to the drain pan to allow complete drainage of pan (See Figure 8).
- Auxiliary drain line should be run to a place where it will be noticeable if it becomes operational. Occupant should be warned that a problem exists if water should begin running from the auxiliary drain line.
- Plug the unused drain connection with the plugs provided in the parts bag, using a thin layer of teflon paste, silicone or teflon tape to form a water tight seal.
- Test condensate drain pan and drain line after installation is complete. Pour water into drain pan, enough to fill drain trap and line. Check to make sure drain pan is draining completely, no leaks are found in drain line fittings, and water is draining from the termination of the primary drain line.

7.3 DUCT FLANGES

Field-installed duct flanges (4 pieces) are shipped with units. Install duct flanges as needed on top of the unit. (See Figure 3.)

8.0 AIR FILTER (not factory-installed)

• External filter or other means of filtration is required. Units should be sized for a maximum of 300 feet/min. air velocity or that recommended for the type filter installed.

Filter application and placement are critical to airflow, which may affect the heating and cooling system performance. Reduced airflow can shorten the life of the system's major components, such as motor, limits, elements, heat relays, evaporator coil or compressor. Consequently, we recommend that the return air duct system have only one filter location. For systems with a return air filter grill or multiple filter grills, can have a filter installed at each of the return air openings.

If high efficiency filters or electronic air cleaners are used in the system, it is important that the airflow is not reduced to maximize system performance and life. Always verify that the system's airflow is not impaired by the filtering system that has been installed, by performing a temperature rise and temperature drop test.

IMPORTANT: DO NOT DOUBLE FILTER THE RETURN AIR DUCT SYSTEM. DO NOT FILTER THE SUPPLY AIR DUCT SYSTEM.

WARNING

Do not operate the system without filters. A portion of the dust entrained in the air may temporarily lodge in the duct runs and at the supply registers. Any circulated dust particles could be heated and charred by contact with the air handler elements. This residue could soil ceilings, walls, drapes, carpets and other articles in the house.

Soot damage may occur with filters in place, when certain types of candles, oil lamps or standing pilots are burned.

9.0 SEQUENCE OF OPERATION 9.1 COOLING (COOLING ONLY OR HEAT PUMP)

• When the thermostat "calls for cooling," the circuit between R and G is completed, causing the blower relay (BR) to energize. The N.O. contacts will close, causing the indoor blower motor (IBM) to operate. The circuit between R and Y is also completed: This circuit closes the contactor (CC) in the outdoor unit starting the compressor (COMP) and outdoor fan motor (OFM).

9.2 HEATING (ELECTRIC HEAT ONLY)

• When the thermostat "calls for heat," the circuit between R and W is completed, and the heater sequencer (HR₁) is energized. The heating elements (HE) and the indoor blower motor (IBM) will come on. Units with a second heater sequencer (HR₂) can be connected with the first sequencer (HR₁) to W on the thermostat sub-base or connected to a second stage W₂ on the sub-base.

9.3 HEATING (HEAT PUMP)

- When the thermostat "calls for heat," the circuits between R and B, R and Y and R and G are completed. Circuit R and B energizes the reversing valve (RV) switching it to the heating position (remains energized as long as selector switch is in "heat" position). Circuit R and Y energizes the contactor (CC) starting the outdoor fan motor (OFM) and compressor (COMP). Circuit R and G energizes the blower relay (BR) starting the indoor blower motor (IBM).
- If the room temperature should continue to fall, circuit R and W₂ is completed by the second-stage heat room thermostat. Circuit R-W₂ energizes a heat sequencer (HR₁). The completed circuit will energize supplemental electric heat. Units with a second heater sequencer (HR₂) can be connected with first sequencer (HR₁) to W₂ on thermostat or connected to a third heating stage W₂ on the thermostat sub-base. A light on the thermostat indicates when supplemental heat is being energized.

9.4 BLOWER TIME DELAY (HEATING OR COOLING)

• All models are equipped with a blower time delay (BTD) in lieu of a blower relay (BR) (see wiring diagram). The blower will run for 30 seconds after the blower time delay (BTD) is de-energized.

9.5 DEFROST (DEFROST HEAT CONTROL)

- For sequence of operation for defrost controls, see outdoor heat pump installation instructions.
- Supplemental heat during defrost can be provided by connecting the purple (PU) pigtail in the outdoor unit to the W on the thermostat. This will complete the circuit between R and W through a set of contacts in the defrost relay (DR) when the outdoor heat pump is in defrost. This circuit, if connected, will help prevent cold air from being discharged from the indoor unit during defrost.
- For most economical operation, if cold air is not of concern during defrost, the purple wire can be left disconnected. Supplemental heat will then come on only when called for by second stage room thermostat.

9.6 EMERGENCY HEAT (HEATING HEAT PUMP)

 If selector switch on thermostat is set to the emergency heat position, the heat pump will be locked out of the heating circuit, and all heating will be electric heat. Jumper should be placed between W₂ and E on the thermostat sub-base so that the electric heat control will transfer to the first stage heat on the thermostat. This will allow the indoor blower to cycle on and off with the electric heat when the fan switch is in the auto position.

9.7 ROOM THERMOSTAT (ANTICIPATOR SETTING)

See instructions with outdoor section, condensing unit or heat pump for recommended room thermostats.

- On units with one electric heat sequencer (HR₁) (see wiring diagram on unit), heat anticipator setting should be .16.
- On units with two electric heat sequencers (HR, & HR₂) (see wiring diagram on unit), heat anticipator setting should be .32 if both are connected to same stage on thermostat. Setting should be .16 if (HR, &HR₂) are connected to separate stages.

NOTE: Some thermostats contain a fixed, non-adjustable heat anticipator. Adjustment is not permitted.

• The thermostat should be mounted 4 to 5 feet above the floor on an inside wall of the living room or a hallway that has good air circulation from the other rooms being controlled by the thermostat. It is essential that there be free air circulation at the location of the same average temperature as other rooms being controlled. Movement of air should not be obstructed by furniture, doors, draperies, etc. The thermostat should not be mounted where it will be affected by drafts, hot or cold water pipes or air ducts in walls, radiant heat from fireplace, lamps, the sun, T.V. or an outside wall. See instruction sheet packaged with thermostat for mounting and installation instructions.

10.0 CALCULATIONS 10.1 CALCULATING TEMPERATURE RISE

• The formula for calculating air temperature rise for electric resistance heat is:

Temperature Rise °F = $\frac{3.16 \text{ x Watts}}{\text{CFM}}$

Where: 3.16 = Constant, CFM = Airflow

10.2 CALCULATING BTUH HEATING CAPACITY

• The formula for calculating BTUH heating capacity for electric resistance heat is:

BTUH Heating = Watts x 3.412

Where: 1 kW = 1000 Watts, 3.412 = Btuh/Watt

10.3 CALCULATING AIRFLOW CFM

• The formula for calculating airflow using temperature rise and heating BTUH for units with electric resistance heat is:

 $CFM = \frac{\text{Heating BTUH}}{1.08 \text{ x Temp. Rise}}$

10.4 CALCULATING CORRECTION FACTOR

 For correction of electric heat output (kW or BTUH) or temperature rise at voltages other than rated voltage multiply by the following correction factor:

Correction Factor = $\frac{\text{Applied Voltage}^2}{\text{Rated Voltage}^2}$

11.0 PRE-START CHECKLIST

O YES Is unit properly located, level, secure and serviceable?

ONO	able?
O YES O NO	Has auxiliary pan been provided under the unit with separate drain? (Units installed above a finished ceiling).
O YES O NO	Is condensate line properly sized, run, trapped, pitched and tested?
O YES O NO	Is ductwork correctly sized, run, taped and insulated?
O YES O NO	Have all cabinet openings and wiring been sealed with caulking?
O YES O NO	Is the filter clean, in place and of adequate size?
O YES O NO	Is the wiring tight, correct and to the wiring diagram?
O YES O NO	Is the unit properly grounded and protected (fused)?
O YES O NO	Is the thermostat heat anticipator been set properly?
O YES O NO	Is the unit circuit breaker(s) rotated properly "on" up - "off" down?
O YES O NO	Are the unit circuit breaker(s) line lug cover(s) in place?
O YES O NO	Are all access panels in place and secure?
Refer start-u	r to outdoor unit installation instructions for system p instructions and refrigerant charging instructions.

12.0 MAINTENANCE

For continuing high performance, and to minimize possible equipment failure, it is essential that periodic maintenance be performed on this equipment. Consult your local dealer as to the proper frequency of maintenance and the availability of a maintenance contract

IMPORTANT: Before performing any service or maintenance procedures, see the "Safety Information" section at the front of this manual.

A WARNING

Units with circuit breaker(s) meet requirements as a service disconnect switch, however, if access is required to the line side (covered) of the circuit breaker, this side of the breaker(s) will be energized with the breaker(s) de-energized. Contact with the line side can cause electrical shock resulting in personal injury or death.

12.1 AIR FILTER (NOT FACTORY-INSTALLED)

Check the system filter every ninety days or as often as found to be necessary and if obstructed, clean or replace at once.

FILTER MAINTENANCE

Have your qualified installer, service agency or HVAC professional instruct you on how to access your filters for regular maintenance.

IMPORTANT: Do not operate the system without a filter in place.

• New filters are available from your local distributor.

12.2 INDOOR COIL - DRAIN PAN - DRAIN LINE

Inspect the indoor coil once each year for cleanliness and clean as necessary. In some cases, it may be necessary to remove the filter and check the return side of the coil with a mirror and flashlight.

IMPORTANT: Do not use caustic household drain cleaners, such as bleach, in the condensate pan or near the indoor coil. Drain cleaners will quickly damage the indoor coil.

12.3 BLOWER MOTOR AND WHEEL

Inspect the blower motor and wheel for cleanliness. It should be several years before it would become necessary to clean the blower motor and wheel.

- If it becomes necessary to remove the blower assembly from the unit, see instructions on removal and disassembly of motor, blower and heater parts.
- The blower motor and wheel may be cleaned by using a vacuum with a soft brush attachment. Remove grease with a mild solvent such as hot water and detergent. Be careful not to disturb the balance weights (clips) on the blower wheel blades. Do not drop or bend wheel as balance will be affected.

12.4 LUBRICATION

The blower motor sleeve bearings are pre-lubricated by the motor manufacturer and do not have oiling ports. Motor should be run for an indefinite period of time without additional lubrication.

12.5 BLOWER ASSEMBLY REMOVAL AND REPLACEMENT

Removing the blower assembly is not required for normal service and maintenance. Removal is necessary for replacement of defective parts such as motor, blower wheel. After extended use, removal of the blower assembly may become necessary for a thorough cleaning of the blower motor and wheel.

WARNING

If removal of the blower assembly is required, all disconnect switches supplying power to the equipment must be de-energized and locked (if not in sight of unit) so the field power wires can be safely removed from the blower assembly. Failure to do so can cause electrical shock resulting in personal injury or death.

- Mark field power supply wiring (for replacement) attached to terminal block or circuit breaker(s) on blower assembly. Remove wiring from terminal block or circuit breaker(s).
- Mark low voltage control wiring (for replacement) where attached to unit control pigtails on right side of blower housing. Remove wire nuts attaching field control wiring to unit control pigtails.
- Remove 4 screws holding blower assembly to front channel of cabinet and pull blower assembly from cabinet.
- To replace blower assembly, slide blower assembly into blower deck. Make sure blower assembly engages lances in deck properly. If assembly hangs up, check to make sure top and bottom are lined up in proper locations.
- Slide blower assembly to back of cabinet and make sure it is completely engaged.
- Replace 4 screws holding blower assembly to front channel of cabinet. Take care not to strip screws, just snug into place.
- Replace low voltage control wiring with wire nuts and make sure wiring is to wiring diagram and a good connection has been made.
- Replace field power wiring to terminal block or circuit breaker(s) on control area of blower assembly. Make sure wires are replaced as they were, check wiring diagram if necessary. Tighten supply power wiring securely to terminals lugs.
- Make sure wiring is within cabinet and will not interfere with access door. Make sure
 proper separation between low voltage control wiring and field power wiring has been
 maintained.
- Replace blower assembly control access panel before energizing equipment.

12.6 MOTOR REPLACEMENT

With the blower assembly removed, the indoor blower motor can be removed and replaced using the following procedure:

- Remove motor leads from the motor capacitor and blower relay. Note lead locations for ease of reassembly. Pull leads from plastic bushing in blower side.
- Loosen the set screw holding blower wheel onto the motor shaft. Shaft extends through blower hub so that a wrench can be used on the extended shaft to break the shaft loose if necessary. Be careful not to damage shaft. A wheel puller can be used on the groove in the blower hub if necessary.
- Remove 4 metal screws holding motor mounts to blower side and remove motor from blower assembly.
- To install new motor, remove 1 screw holding motor mounts to motor shell and remove mounts (four) from motor.
- Install (four) motor mounts to motor using same screw or screws supplied with replacement motor.

🛦 WARNING

To avoid electrical shock which can result in personal injury or death, use only the screws furnished in the motor shell mounting holds. Screws are $#8-18 \times .25$ in. long blunt nose thread forming. Screws longer than 1/4 in. may contact the motor winding.

- To reassemble, insert motor shaft through hub in blower wheel and orient motor to original position with motor leads and motor label to front of blower (control area).
- Reassemble 12 sheet metal screws through motor mounts into blower side. Do not
 overtorque screws, blower side is light gage sheet metal, just snug screws tight
 enough to hold motor mounts in position.
- Turn motor shaft so that flat on shaft is located under blower wheel setscrew, and blower wheel is centered in blower housing with the same distance on each side between the inlet venturi and outside of blower wheel. Tighten setscrew on motor shaft. Turn wheel by hand to make sure it runs true without hitting blower sides.
- Reassemble motor wiring to capacitor and blower relay making sure that wires match wiring diagram and are tight and secure.

12.7 BLOWER WHEEL REPLACEMENT

With the blower assembly removed and the motor assembly removed (see above instructions), remove the 4 screws holding the blower wrap (cutoff) to the blower sides.

- With wrap (cutoff) screws removed, cut off end of blower wrap will spring up. Lifting
 wrap blower wheel is removed through the discharge opening in the blower housing.
- To replace, make sure wheel is oriented properly with hub to the opposite side from the motor. Lift blower wrap and insert blower wheel through discharge opening in the blower housing.
- Hold blower wrap down into position and replace two screws holding blower wrap to blower sides.
- See motor replacement and blower assembly instructions for remaining assembly procedure.

13.0 REPLACEMENT PARTS

Any replacement part used to replace parts originally supplied on equipment must be the same as or an approved alternate to the original part supplied. The manufacturer will not be responsible for replacement parts not designed to physically fit or operate within the design parameters the original parts were selected for.

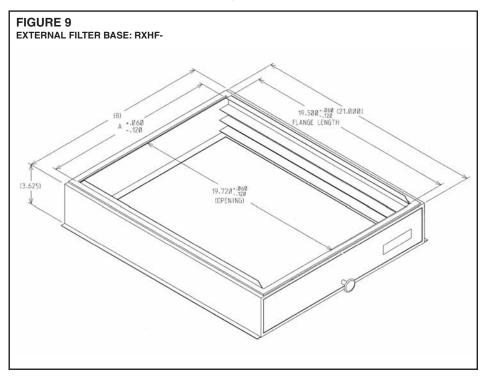
These parts include but are not limited to: Circuit breakers, heater controls, heater limit controls, heater elements, motor, motor capacitor, blower relay, control transformer, blower wheel, filter, indoor coil and sheet metal parts.

When ordering replacement parts, it is necessary to order by part number and include with the order the complete model number and serial number from the unit data plate. (See parts list for unit component part numbers).

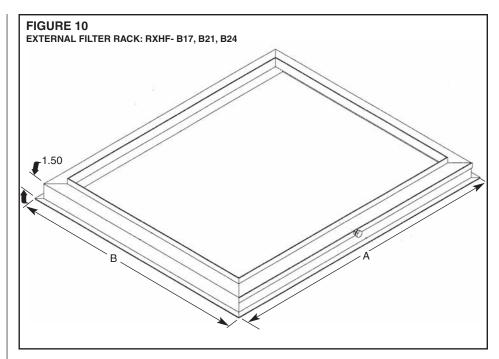
14.0 ACCESSORIES-KITS-PARTS

• Combustible Floor Base RXHB- for downflow applications.

Model Cabinet Size	Combustible Floor Base Model Number
17	RXHB-17
21	RXHB-21
24	RXHB-24


- Jumper Bar Kit 3 Ckt. to 1 Ckt. RXBJ-A31 is used to convert single phase multiple three circuit units to a single supply circuit. Kit includes cover and screw for line side terminals.
- Jumper Bar Kit 2 Ckt. to 1 Ckt. RXBJ-A21 is used to convert single phase multiple two circuit units to a single supply circuit. Kit includes cover and screw for line side terminals.

NOTE: No jumper bar kit is available to convert three phase multiple two circuit units to a single supply circuit.


• External Filter Base RXHF- (See Figure 9)

Model Cabinet Size	Filter Size	Part Number	Α	В
17	16 x 20 [406 x 508]	RXHF-17 Accommodate	15.70	17.50
21	20 x 20 [508 x 508]		19.20	21.00
24	25 x 20 [635 x 508]	RXHF-24 filter	22.70	25.50

• External Filter Rack: RXHF-B (See Figure 9)

Model	Cabinet Size	Filter Size	Part Number	Α	В
	17	16 x 20	RXHF-B17	16.90	20.77
	21	20 x 20	RXHF-B21 Accommodate	20.40	20.77
	24	25 x 20	RXHF-B24	25.00	21.04

• Horizontal Adapter Kit RXHH-

This horizontal adapter kit is used to convert Upflow/Downflow only models to horizontal flow. See the following table to order proper horizontal adapter kit.

Coil Model	Horizontal Adapter Kit Model Number (Single Qty.)	Horizontal Adapter Kit Model Number (10-pak Qty.)
2414	RXHH-A01	RXHH-A01x10
2417	RXHH-A02	RXHH-A02x10
3617/3621	RXHH-A03	RXHH-A03x10
4821/4824	RXHH-A04	RXHH-A04x10
6024	RXHH-A05	RXHH-A05x10

Auxiliary Horizontal Overflow Pan RXBM-

Nominal Cooling Capacity Tons	Auxiliary Horizontal Overflow Pan Accessory Model Number
1½ - 3	RXBM-AC48
3½ - 5	RXBM-AC61